The radius of robust feasibility of uncertain mathematical programs : a survey and recent developments
Year of publication: |
2022
|
---|---|
Authors: | Goberna, Miguel A. ; Jeyakumar, Vaithilingam ; Li, Guoyin ; Vicente-Pérez, J. |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 296.2022, 3 (1.2.), p. 749-763
|
Subject: | Robustness and sensitivity analysis | Radius of robust feasibility | Linear programming | Integer programming | Convex programming | Semi-infinite programming | Conic linear programming | Distance to ill-posedness | Mathematische Optimierung | Mathematical programming | Theorie | Theory | Robustes Verfahren | Robust statistics | Sensitivitätsanalyse | Sensitivity analysis |
-
Set-based robust optimization of uncertain multiobjective problems via epigraphical reformulations
Eichfelder, Gabriele, (2024)
-
Luo, Fengqiao, (2019)
-
Global sensitivity analysis via a statistical tolerance approach
Curry, Stewart, (2022)
- More ...
-
Robust solutions to multi-objective linear programs with uncertain data
Goberna, M. A., (2015)
-
Guaranteeing highly robust weakly efficient solutions for uncertain multi-objective convex programs
Goberna, M. A., (2018)
-
Jeyakumar, Vaithilingam, (2014)
- More ...