The stochastic collocation Monte Carlo sampler : highly efficient sampling from "expensive" distributions
| Year of publication: |
2019
|
|---|---|
| Authors: | Grzelak, Lech A. ; Witteveen, J. A. S. ; Suárez-Taboada, M. ; Oosterlee, Cornelis Willebrordus |
| Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 19.2019, 2, p. 339-356
|
| Subject: | Exact sampling | Heston | Lagrange interpolation | Monte Carlo | SABR | Squared Bessel | Stochastic collocation | Monte-Carlo-Simulation | Monte Carlo simulation | Stochastischer Prozess | Stochastic process | Stichprobenerhebung | Sampling | Schätztheorie | Estimation theory |
-
Adaptive importance sampling for efficient stochastic root finding and quantile estimation
He, Shengyi, (2024)
-
Simulation smoothing for state space models : an extremum Monte Carlo approach
Moussa, Karim, (2025)
-
Numerically accelerated importance sampling for nonlinear non-Gaussian state-space models
Koopman, Siem Jan, (2015)
- More ...
-
Collocating volatility : a competitive alternative to stochastic local volatility models
Stoep, Anthonie W. van der, (2020)
-
Pricing and hedging prepayment risk in a mortgage portfolio
Casamassima, Emanuele, (2022)
-
Relevance of wrong-way risk in funding valuation adjustments
Zwaard, Thomas van der, (2022)
- More ...