The two-parameter Volterra multifractional process
In the case where the parameters H1 and H2 belong to (1/2,1), Feyel and De La Pradelle (1991) have introduced a representation of the usual fractional Brownian sheet {Bs,tH1,H2}(s,t)∈R+2, as a stochastic integral over the compact rectangle [0,s]×[0,t], with respect to the Brownian sheet. In this paper, we introduce the so-called two-parameter Volterra multifractional process by replacing in the latter representation of {Bs,tH1,H2}(s,t)∈R+2 the constant parameters H1 and H2 by two Hölder functions α(s) and β(t) with values in (1/2,1). We obtain that the pointwise and the local Hölder exponents of the two-parameter Volterra multifractional process at any point (s0,t0) are equal to min(α(s0),β(t0)).
Year of publication: |
2012
|
---|---|
Authors: | Mendy, Ibrahima |
Published in: |
Statistics & Probability Letters. - Elsevier, ISSN 0167-7152. - Vol. 82.2012, 12, p. 2115-2124
|
Publisher: |
Elsevier |
Subject: | Fractional Brownian sheet | Volterra | Multifractional process |
Saved in:
Saved in favorites
Similar items by subject
-
Multifractional Poisson process, multistable subordinator and related limit theorems
Molchanov, Ilya, (2015)
-
Volterra : etruskisches und mittelalterliches Juwel im Herzen der Toskana
Steingräber, Stephan, (2002)
-
Functional limit theorems for generalized variations of the fractional Brownian sheet
Pakkanen, Mikko S., (2014)
- More ...