The use of machine learning techniques for assessing the potential of organizational resilience
Year of publication: |
2024
|
---|---|
Authors: | Ewertowski, Tomasz ; Güldoğuş, Buse Çisil ; Kuter, Semih ; Akyüz, Süreyya ; Weber, Gerhard-Wilhelm ; Sadłowska-Wrzesińska, Joanna ; Racek, Elżbieta |
Published in: |
Central European journal of operations research. - Heidelberg : Physica-Verl., ISSN 1613-9178, ZDB-ID 2093829-9. - Vol. 32.2024, 3, p. 685-710
|
Subject: | Artificial intelligence | Decision-making process | Machine learning | Organizational resilience | Regression | Künstliche Intelligenz | Coping-Strategie | Coping strategy | Risikomanagement | Risk management |
-
Intelligent digital twin (iDT) for supply chain stress-testing, resilience, and viability
Ivanov, Dmitry, (2023)
-
AI technologies and their impact on supply chain resilience during COVID-19
Modgil, Sachin, (2022)
-
Elamir, Elsayed A. H., (2020)
- More ...
-
A progressive approach for processing satellite data by operational research
Kuter, Semih, (2017)
-
Ewertowski, Tomasz, (2021)
-
Optimal model description of finance and human factor indices
Kalaycı, Betül, (2025)
- More ...