The weak convergence rate of two semi-exact discretization schemes for the Heston model
| Year of publication: |
2021
|
|---|---|
| Authors: | Mickel, Annalena ; Neuenkirch, Andreas |
| Published in: |
Risks : open access journal. - Basel : MDPI, ISSN 2227-9091, ZDB-ID 2704357-5. - Vol. 9.2021, 1/23, p. 1-38
|
| Subject: | discretization schemes for SDEs | exact simulation of the CIR process | Heston model | Kolmogorov PDE | Malliavin calculus | Stochastischer Prozess | Stochastic process | Optionspreistheorie | Option pricing theory | Volatilität | Volatility | Simulation |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
| Language: | English |
| Other identifiers: | 10.3390/risks9010023 [DOI] hdl:10419/258113 [Handle] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
The weak convergence rate of two semi-exact discretization schemes for the Heston model
Mickel, Annalena, (2021)
-
Fast and Accurate Long Stepping Simulation of the Heston Stochastic Volatility Model
Chan, Jiun Hong, (2010)
-
Simulation schemes for the Heston model with Poisson conditioning
Choi, Jaehyuk, (2024)
- More ...
-
The weak convergence rate of two semi-exact discretization schemes for the Heston model
Mickel, Annalena, (2021)
-
Sharp L¹-approximation of the log-Heston stochastic differential equation by Euler-type methods
Mickel, Annalena, (2023)
-
Sharp L¹-approximation of the log-Heston stochastic differential equation by Euler-type methods
Mickel, Annalena, (2023)
- More ...