Time-inconsistent Markovian control problems under model uncertainty with application to the mean-variance portfolio selection
Year of publication: |
2021
|
---|---|
Authors: | Bielecki, Tomasz R. ; Chen, Tao ; Cialenco, Igor |
Published in: |
International journal of theoretical and applied finance. - River Edge, NJ [u.a.] : World Scientific, ISSN 0219-0249, ZDB-ID 1428982-9. - Vol. 24.2021, 1, p. 1-28
|
Subject: | Adaptive robust control | model uncertainty | stochastic control | adaptiverobust dynamic programming | recursive confidence regions | time-inconsistent Markoviancontrol problem | optimal portfolio allocation | mean-variance portfolio selection | terminalcriteria | machine learning | Gaussian surrogate processes | regression Monte Carlo | Portfolio-Management | Portfolio selection | Kontrolltheorie | Control theory | Mathematische Optimierung | Mathematical programming | Stochastischer Prozess | Stochastic process | Dynamische Optimierung | Dynamic programming | Entscheidung unter Unsicherheit | Decision under uncertainty | Markov-Kette | Markov chain | Monte-Carlo-Simulation | Monte Carlo simulation |
-
A theory of Markovian time-inconsistent stochastic control in discrete time
Björk, Tomas, (2014)
-
Rectangular sets of probability measures
Shapiro, Alexander, (2016)
-
Kafash, Behzad, (2019)
- More ...
-
Dynamic Conic Finance via Backward Stochastic Difference Equations
Bielecki, Tomasz R., (2014)
-
Fair estimation of capital risk allocation
Bielecki, Tomasz R., (2020)
-
Dynamic Limit Growth Indices in Discrete Time
Bielecki, Tomasz R., (2013)
- More ...