Time-inconsistent Markovian control problems under model uncertainty with application to the mean-variance portfolio selection
| Year of publication: |
2021
|
|---|---|
| Authors: | Bielecki, Tomasz R. ; Chen, Tao ; Cialenco, Igor |
| Published in: |
International journal of theoretical and applied finance. - River Edge, NJ [u.a.] : World Scientific, ISSN 0219-0249, ZDB-ID 1428982-9. - Vol. 24.2021, 1, p. 1-28
|
| Subject: | Adaptive robust control | model uncertainty | stochastic control | adaptiverobust dynamic programming | recursive confidence regions | time-inconsistent Markoviancontrol problem | optimal portfolio allocation | mean-variance portfolio selection | terminalcriteria | machine learning | Gaussian surrogate processes | regression Monte Carlo | Portfolio-Management | Portfolio selection | Kontrolltheorie | Control theory | Mathematische Optimierung | Mathematical programming | Stochastischer Prozess | Stochastic process | Dynamische Optimierung | Dynamic programming | Entscheidung unter Unsicherheit | Decision under uncertainty | Markov-Kette | Markov chain | Monte-Carlo-Simulation | Monte Carlo simulation |
-
Data-driven non-parametric robust control under dependence uncertainty
Bayraktar, Erhan, (2024)
-
A theory of Markovian time-inconsistent stochastic control in discrete time
Björk, Tomas, (2014)
-
Rectangular sets of probability measures
Shapiro, Alexander, (2016)
- More ...
-
Bielecki, Tomasz R., (2018)
-
Risk filtering and risk-averse control of Markovian systems subject to model uncertainty
Bielecki, Tomasz R., (2023)
-
A dynamic model of central counterparty risk
Bielecki, Tomasz R., (2018)
- More ...