Tuning hyperparameters of a SVM-based water demand forecasting system through parallel global optimization
Year of publication: |
2019
|
---|---|
Authors: | Candelieri, Antonio ; Giordani, Ilaria ; Archetti, Francesco ; Barkalov, Konstantin ; Meyerov, Iosif ; Polovinkin, Alexey ; Sysoyev, Alexander ; Zolotykh, Nikolai |
Published in: |
Computers & operations research : and their applications to problems of world concern ; an international journal. - Oxford [u.a.] : Elsevier, ISSN 0305-0548, ZDB-ID 194012-0. - Vol. 106.2019, p. 202-209
|
Subject: | Short-term water demand forecasting | Support Vector Machine | Global optimization | Time-series clustering | Prognoseverfahren | Forecasting model | Nachfrage | Demand | Wasserversorgung | Water supply | Mathematische Optimierung | Mathematical programming | Wasser | Water | Theorie | Theory | Prognose | Forecast | Mustererkennung | Pattern recognition | Zeitreihenanalyse | Time series analysis |
-
An empirical investigation of water consumption forecasting methods
Karamaziotis, Panagiotis I., (2020)
-
McNown, Robert F., (2015)
-
Forecasting the demands for water
Sewell, W. R. Derrick, (1968)
- More ...
-
Genetic programming for anticancer therapeutic response prediction using the NCI-60 dataset
Archetti, Francesco, (2010)
-
Hyperparameter optimization for recommender systems through Bayesian optimization
Galuzzi, B. G., (2020)
-
A hyper-solution framework for classification problems via metaheuristic approaches
Candelieri, Antonio, (2011)
- More ...