Understanding the determinants of bond excess returns using explainable AI
Year of publication: |
2023
|
---|---|
Authors: | Beckmann, Lars ; Debener, Jörn ; Kriebel, Johannes |
Published in: |
Journal of Business Economics. - Berlin, Heidelberg : Springer, ISSN 1861-8928. - Vol. 93.2023, 9, p. 1553-1590
|
Publisher: |
Berlin, Heidelberg : Springer |
Subject: | Asset pricing | Bond excess returns | Machine learning | Explainable artificial intelligence |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Article |
Language: | English |
Other identifiers: | 10.1007/s11573-023-01149-5 [DOI] |
Classification: | C40 - Econometric and Statistical Methods: Special Topics. General ; G11 - Portfolio Choice ; G12 - Asset Pricing ; G17 - Financial Forecasting ; E44 - Financial Markets and the Macroeconomy |
Source: |
-
Understanding the determinants of bond excess returns using explainable AI
Beckmann, Lars, (2023)
-
Inflation and Nominal Financial Reporting: Implications for Performance and Stock Prices
Konchitchki, Yaniv, (2011)
-
Automated machine learning and asset pricing
Healy, Jerome V., (2024)
- More ...
-
Understanding the determinants of bond excess returns using explainable AI
Beckmann, Lars, (2023)
-
CBDC and the shadow of bank disintermediation : US stock market insights on threats and remedies
Beckmann, Lars, (2024)
-
Detecting insurance fraud using supervised and unsupervised machine learning
Debener, Jörn, (2023)
- More ...