Unified inference for sparse and dense longitudinal models
In longitudinal data analysis, statistical inference for sparse data and dense data could be substantially different. For kernel smoothing, the estimate of the mean function, the convergence rates and the limiting variance functions are different in the two scenarios. This phenomenon poses challenges for statistical inference, as a subjective choice between the sparse and dense cases may lead to wrong conclusions. We develop methods based on self-normalization that can adapt to the sparse and dense cases in a unified framework. Simulations show that the proposed methods outperform some existing methods. Copyright 2013, Oxford University Press.
Year of publication: |
2013
|
---|---|
Authors: | Kim, Seonjin ; Zhao, Zhibiao |
Published in: |
Biometrika. - Biometrika Trust, ISSN 0006-3444. - Vol. 100.2013, 1, p. 203-212
|
Publisher: |
Biometrika Trust |
Saved in:
Online Resource
Saved in favorites
Similar items by person
-
Kim, Seonjin, (2015)
-
Locally stationary quantile regression for inflation and interest rates
Xu, Zhuying, (2022)
-
Variable length Markov chain with exogenous covariates
Zanin Zambom, Adriano, (2021)
- More ...