UNIFORM CONVERGENCE OF SERIES ESTIMATORS OVER FUNCTION SPACES
This paper considers a series estimator of <bold>E</bold>[α(<italic>Y</italic>)|λ(<italic>X</italic>) = λ̄], (α,λ) null 𝛢 × Λ, indexed by function spaces, and establishes the estimator's uniform convergence rate over λ̄ null <bold>R</bold>, α null 𝛢, and λ null Λ, when 𝛢 and Λ have a finite integral bracketing entropy. The rate of convergence depends on the bracketing entropies of 𝛢 and Λ in general. In particular, we demonstrate that when each λ null Λ is locally uniformly null<sub>2</sub>-continuous in a parameter from a space of polynomial discrimination and the basis function vector <italic>p</italic><sup>null</sup> in the series estimator keeps the smallest eigenvalue of <bold>E</bold>[<italic>p</italic><sup>null</sup>(λ(<italic>X</italic>))<italic>p</italic><sup>null</sup>(λ(<italic>X</italic>))‼] above zero uniformly over λ null Λ, we can obtain the same convergence rate as that established by de Jong (2002, <italic>Journal of Econometrics</italic> 111, 1–9).
Year of publication: |
2008
|
---|---|
Authors: | Song, Kyungchul |
Published in: |
Econometric Theory. - Cambridge University Press. - Vol. 24.2008, 06, p. 1463-1499
|
Publisher: |
Cambridge University Press |
Description of contents: | Abstract [journals.cambridge.org] |
Saved in:
Saved in favorites
Similar items by person
-
Bootstrapping semiparametric models with single-index nuisance parameters
Song, Kyungchul, (2010)
-
Efficient estimation of average treatment effects under treatment-based sampling
Song, Kyungchul, (2010)
-
Testing semiparametric conditional moment restrictions using conditional martingale transforms
Song, Kyungchul, (2010)
- More ...