Univariate and multivariate machine learning forecasting models on the price returns of cryptocurrencies
Year of publication: |
2021
|
---|---|
Authors: | Miller, Dante ; Kim, Jong-Min |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 14.2021, 10, Art.-No. 486, p. 1-10
|
Subject: | cryptocurrencies | deep learning networks | recurrent neural networks | long short-term memory networks | Neuronale Netze | Neural networks | Virtuelle Währung | Virtual currency | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Lernprozess | Learning process | Finanzmarkt | Financial market |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm14100486 [DOI] hdl:10419/258590 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Forecasting returns volatility of cryptocurrency by applying various deep learning algorithms
Khan, Farman Ullah, (2023)
-
Forecasting bitcoin volatility using hybrid GARCH models with machine learning
Zahid, Mamoona, (2022)
-
Fioribello, Simone, (2018)
- More ...
-
Miller, Dante, (2021)
-
Forecasting the price of the cryptocurrency using linear and nonlinear error correction model
Kim, Jong-Min, (2022)
-
Finding Nemo: Predicting movie performances by machine learning methods
Kim, Jong-Min, (2020)
- More ...