Unleashing the power of text for credit default prediction : comparing human-written and generative AI-refined texts
Year of publication: |
2025
|
---|---|
Authors: | Wu, Zongxiao ; Dong, Yizhe ; Li, Yaoyiran ; Shi, Baofeng |
Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 326.2025, 3 (1.11.), p. 691-706
|
Subject: | Credit risk | Generative AI | Large language model | OR in banking | Text mining | Kreditrisiko | Künstliche Intelligenz | Artificial intelligence | Text | Data Mining | Data mining |
-
The value of text for small business default prediction : a deep learning approach
Stevenson, Matthew, (2021)
-
Performance improvement in budget hotels through consumer sentiment analysis using text mining
Mukherjee, Debarshi, (2023)
-
Global schema as local data integrator using active learning to identify candidates attributes
Santos, Clóvis, (2023)
- More ...
-
Credit rating and microfinance lending decisions based on loss given default (LGD)
Shi, Baofeng, (2019)
-
Spatial dependence in microfinance credit default
Medina-Olivares, Victor, (2022)
-
Sun, Yue, (2022)
- More ...