Unleashing the power of text for credit default prediction : comparing human-written and generative AI-refined texts
| Year of publication: |
2025
|
|---|---|
| Authors: | Wu, Zongxiao ; Dong, Yizhe ; Li, Yaoyiran ; Shi, Baofeng |
| Published in: |
European journal of operational research : EJOR. - Amsterdam [u.a.] : Elsevier, ISSN 0377-2217, ZDB-ID 1501061-2. - Vol. 326.2025, 3 (1.11.), p. 691-706
|
| Subject: | Credit risk | Generative AI | Large language model | OR in banking | Text mining | Kreditrisiko | Künstliche Intelligenz | Artificial intelligence | Text | Data Mining | Data mining |
-
The value of text for small business default prediction : a deep learning approach
Stevenson, Matthew, (2021)
-
Performance improvement in budget hotels through consumer sentiment analysis using text mining
Mukherjee, Debarshi, (2023)
-
Benhayoun, Lamiae, (2021)
- More ...
-
Spatial dependence in microfinance credit default
Medina-Olivares, Victor, (2022)
-
Sun, Yue, (2022)
-
Dynamic dependence of futures basis between the Chinese and international grains markets
Wang, Hao, (2024)
- More ...