User response to e-WOM in social networks : how to predict a content influence in Twitter
Year of publication: |
2020
|
---|---|
Authors: | Dahka, Zohreh Yousefi ; Hajiheydari, Nastaran ; Rouhani, Saeed |
Published in: |
International journal of internet marketing and advertising : IJIMA. - Geneva : Inderscience Enterprises Limited, ISSN 1741-8100, ZDB-ID 2145038-9. - Vol. 14.2020, 1, p. 91-111
|
Subject: | electronic word-of-mouth | e-WOM | social media | e-retailing | content influence | data mining | Twitter | text mining | Social Web | Social web | Data Mining | Data mining | Virales Marketing | Viral marketing | Soziales Netzwerk | Social network | Online-Marketing | Internet marketing | Konsumentenverhalten | Consumer behaviour |
-
Predicting the influence of users' posted information for eWOM advertising in social networks
Chen, Yen-liang, (2014)
-
Comparing consumer-produced product reviews across multiple websites with sentiment classification
He, Wu, (2018)
-
Behind the ratings : text mining of restaurant customers' online reviews
Jia, Susan, (2018)
- More ...
-
Elucidation of big data analytics in banking : a four-stage Delphi study
Soltani Delgosha, Mohammad, (2020)
-
Hajiheydari, Nastaran, (2021)
-
Factors Affecting Loyalty of Mobile Social Networks' Users
Hajiheydari, Nastaran, (2017)
- More ...