Using boosting algorithms to predict bank failure : an untold story
Year of publication: |
2021
|
---|---|
Authors: | Pham, Xuan T. T. ; Ho, Tin H. |
Published in: |
International review of economics & finance : IREF. - Amsterdam [u.a.] : Elsevier, ISSN 1059-0560, ZDB-ID 1137476-7. - Vol. 76.2021, p. 40-54
|
Subject: | Bank failure prediction | Boosting algorithms | Target variables | U.S. banks | Variable selection techniques | XGBoost | Bankinsolvenz | Bank failure | Prognoseverfahren | Forecasting model | USA | United States | Algorithmus | Algorithm |
-
Predicting failure in the US banking sector : an extreme gradient boosting approach
Carmona, Pedro, (2019)
-
Anticipating bank distress in the Eurozone : an Extreme Gradient Boosting approach
Climent Diranzo, Francisco J., (2019)
-
Comparing out-of-sample performance of machine learning methods to forecast U.S. GDP growth
Chu, Ba, (2023)
- More ...
-
Effect of FinCredit on income inequality : the moderating role of financial inclusion
Pham, Xuan T. T., (2024)
-
Abnormal loan growth and bank risk-taking in Vietnam: A quantile regression approach
Ho, Tin H., (2021)
-
Efficiency in Vietnamese banking: A meta-regression analysis approach
Ho, Tin H., (2021)
- More ...