Using deep learning to develop a stock price prediction model based on individual investor emotions
Year of publication: |
2021
|
---|---|
Authors: | Chun, Jaeheon ; Ahn, Jaejoon ; Kim, Youngmin ; Lee, Sukjun |
Published in: |
The journal of behavioral finance : a publication of the Institute of Psychology and Markets and LEA. - New York, NY [u.a.] : Routledge, Taylor & Francis Group, ISSN 1542-7579, ZDB-ID 2111535-7. - Vol. 22.2021, 4, p. 480-489
|
Subject: | Deep neural network | Emotion indicator | Multidimensional emotions | Stock price prediction | Börsenkurs | Share price | Emotion | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Anlageverhalten | Behavioural finance |
-
Han, Jae Jung, (2023)
-
A dynamic scenario-driven technique for stock price prediction and trading
Thesia, Yash, (2022)
-
Wang, Jujie, (2023)
- More ...
-
Industrial workforce policy for an economy in transition : challenges and implications
Kim, Youngmin, (2023)
-
The effect of the minimum wage on working hours and wages by industry
Kim, Youngmin, (2020)
-
Kim, Youngmin, (2022)
- More ...