Using machine learning to detect misstatements
Year of publication: |
2021
|
---|---|
Authors: | Bertomeu, Jeremy ; Cheynel, Edwige ; Floyd, Eric ; Pan, Wenqiang |
Published in: |
Review of accounting studies. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1573-7136, ZDB-ID 2004326-0. - Vol. 26.2021, 2, p. 468-519
|
Subject: | Restatement | Manipulation | Earnings management | Machine learning | Data analytics | Regression tree | Misstatement | Irregularity | Fraud | Prediction | SEC | Enforcement | Gradient boosted regression tree | Data mining | Accounting | Detection | AAERs | Künstliche Intelligenz | Artificial intelligence | Data Mining | Regressionsanalyse | Regression analysis | Bilanzpolitik | Accounting policy | Bilanzdelikt | Accounting fraud | Prognoseverfahren | Forecasting model | Betrug |
-
Predicting fraud in MD&A sections using deep learning
Sivasubramanian, Sachin Velloor, (2024)
-
Fraudulent financial reporting and data analytics : an explanatory study from Ireland
Aboud, Ahmed, (2022)
-
Fraud detection in financial statement : a study using Beneish algorithm
Sankar, B.P. Bijay, (2024)
- More ...
-
Using Machine Learning to Detect Misstatements
Bertomeu, Jeremy, (2020)
-
Strategic Withholding and Imprecision in Asset Measurement
BERTOMEU, JEREMY, (2021)
-
Are the Fama French factors treated as risk? Evidence from CEO compensation
Bertomeu, Jeremy, (2018)
- More ...