Using machine learning to detect misstatements
| Year of publication: |
2021
|
|---|---|
| Authors: | Bertomeu, Jeremy ; Cheynel, Edwige ; Floyd, Eric ; Pan, Wenqiang |
| Published in: |
Review of accounting studies. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1573-7136, ZDB-ID 2004326-0. - Vol. 26.2021, 2, p. 468-519
|
| Subject: | Restatement | Manipulation | Earnings management | Machine learning | Data analytics | Regression tree | Misstatement | Irregularity | Fraud | Prediction | SEC | Enforcement | Gradient boosted regression tree | Data mining | Accounting | Detection | AAERs | Künstliche Intelligenz | Artificial intelligence | Data Mining | Regressionsanalyse | Regression analysis | Bilanzpolitik | Accounting policy | Bilanzdelikt | Accounting fraud | Prognoseverfahren | Forecasting model | Betrug |
-
Predicting fraud in MD&A sections using deep learning
Sivasubramanian, Sachin Velloor, (2024)
-
The role of AI in identifying and preventing fraudulent activities
Upadhyaya, Purnima, (2025)
-
Fraud detection in financial statement : a study using Beneish algorithm
Sankar, B.P. Bijay, (2024)
- More ...
-
Using Machine Learning to Detect Misstatements
Bertomeu, Jeremy, (2020)
-
Retaining Alpha : The Effect of Trade Size and Rebalancing Frequency on FX Strategy Returns
Melvin, Michael, (2020)
-
Retaining alpha : the effect of trade size and rebalancing frequency on FX strategy returns
Melvin, Michael, (2020)
- More ...