Using supervised machine learning methods for RFM segmentatio : a casino direct marketing communication case
Alternative title: | Korištenje nadziranih metoda strojnoga učenja za RFM segmentaciju : sluc̆aj izravne marketins̆ke komunikacije kasina |
---|---|
Year of publication: |
2023
|
Authors: | Bratina, Danijel ; Faganel, Armand |
Published in: |
Market : review for marketing theory and practice. - Zagreb : Školska Knjiga, ISSN 0353-4790, ZDB-ID 1196573-3. - Vol. 35.2023, 1, p. 7-22
|
Subject: | RFM segmentation | machine learning algorithms | decision trees | support vector machines | naive Bayes algorithm | logistic regression | Algorithmus | Algorithm | Künstliche Intelligenz | Artificial intelligence | Mustererkennung | Pattern recognition | Direktmarketing | Direct marketing | Entscheidungsbaum | Decision tree | Glücksspiel | Gambling | Theorie | Theory |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Zusammenfassung in kroatischer Sprache |
Other identifiers: | 10.22598/mt/2023.35.1.7 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Generating buy/sell signals for an equity share using machine learning
Erkartal, Bugra, (2018)
-
Margin optimal classification trees
D'Onofrio, Federico, (2024)
-
Machine learning applications in activity-travel behaviour research : a review
Koushik, Anil, (2020)
- More ...
-
Understanding gen z and gen x responses to influencer communications
Bratina, Danijel, (2024)
-
Industrial relationships : branding and purchasing decisions in the pumps market
Faganel, Armand, (2022)
-
Assessing the Financial Value of a Brand Equity by Applying Behavioural Models
Bratina, Danijel, (2007)
- More ...