Valuation Ratios, Surprises, Uncertainty or Sentiment : How Does Financial Machine Learning Predict Returns From Earnings Announcements?
| Year of publication: |
2020
|
|---|---|
| Authors: | Schnaubelt, Matthias ; Seifert, Oleg |
| Publisher: |
[S.l.] : SSRN |
| Subject: | Prognoseverfahren | Forecasting model | Finanzanalyse | Financial analysis | Künstliche Intelligenz | Artificial intelligence | Ankündigungseffekt | Announcement effect | Gewinnprognose | Earnings announcement | Risiko | Risk | Portfolio-Management | Portfolio selection | Gewinn | Profit | Kapitaleinkommen | Capital income | Anlageverhalten | Behavioural finance |
| Extent: | 1 Online-Ressource (57 p) |
|---|---|
| Type of publication: | Book / Working Paper |
| Language: | English |
| Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments April 15, 2020 erstellt |
| Other identifiers: | 10.2139/ssrn.3577132 [DOI] |
| Source: | ECONIS - Online Catalogue of the ZBW |
-
Schnaubelt, Matthias, (2020)
-
Bhattacharya, Nilabhra, (2021)
-
Prior forecasting accuracy and investor reaction to management earnings forecasts
Hutton, Amy P., (2021)
- More ...
-
A topic modeling perspective on investor uncertainty
Perico Ortiz, Daniel, (2023)
-
Schnaubelt, Matthias, (2020)
-
A Topic Modeling Perspective on Investor Uncertainty
Perico Ortiz, Daniel, (2023)
- More ...