Value-at-Risk and Extreme Returns
We propose a semi-parametric method for unconditional Value-at-Risk (VaR) evaluation. The largest risks are modelled parametrically, while smaller risks are captured by the non-parametric empirical distribution function. A comparison of methods on a portfolio of stock and option returns reveals that at the 5% level the RiskMetrics analysis is best, but for predictions of low probability worst outcomes, it strongly underpredicts the VaR while the semi-parametric method is the most accurate.
Year of publication: |
2000
|
---|---|
Authors: | DANIELSSON, Jon ; VRIES, Casper G. DE |
Published in: |
Annales d'Economie et de Statistique. - École Nationale de la Statistique et de l'Admnistration Économique (ENSAE). - 2000, 60, p. 239-270
|
Publisher: |
École Nationale de la Statistique et de l'Admnistration Économique (ENSAE) |
Saved in:
Saved in favorites
Similar items by person
-
Vof or VaR?: Firm value and risk management
Daníelsson, Jón, (1999)
-
Value-at-risk and extreme returns
Daníelsson, Jón, (1997)
-
Value-at-risk and extreme returns
Daníelsson, Jón, (1998)
- More ...