Vast Portfolio Selection With Gross-Exposure Constraints
This article introduces the large portfolio selection using gross-exposure constraints. It shows that with gross-exposure constraints, the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results by Jagannathan and Ma. It also shows that the no-short-sale portfolio can be improved by allowing some short positions. The applications to portfolio selection, tracking, and improvements are also addressed. The utility of our new approach is illustrated by simulation and empirical studies on the 100 Fama--French industrial portfolios and the 600 stocks randomly selected from Russell 3000.
Year of publication: |
2012
|
---|---|
Authors: | Fan, Jianqing ; Zhang, Jingjin ; Yu, Ke |
Published in: |
Journal of the American Statistical Association. - Taylor & Francis Journals, ISSN 0162-1459. - Vol. 107.2012, 498, p. 592-606
|
Publisher: |
Taylor & Francis Journals |
Saved in:
Saved in favorites
Similar items by person
-
Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios
Fan, Jianqing, (2008)
-
Vast Portfolio Selection With Gross-Exposure Constraints
Fan, Jianqing, (2012)
-
Asset Allocation and Risk Assessment with Gross Exposure Constraints for Vast Portfolios
Fan, Jianqing, (2009)
- More ...