Well-Posedness of Measurement Error Models for Self-Reported Data
It is widely admitted that the inverse problem of estimating the distribution of a latent variable X* from an observed sample of X, a contaminated measurement of X*, is ill-posed. This paper shows that a property of self-reporting errors, observed from validation studies, is that the probability of reporting the truth is nonzero conditional on the true values, and furthermore, this property implies that measurement error models for self-reporting data are in fact well-posed. We also illustrate that the classical measurement error models may in fact be conditionally well-posed given prior information on the distribution of the latent variable X*.