What works best when? : a systematic evaluation of heuristics for Max-Cut and QUBO
Year of publication: |
2018
|
---|---|
Authors: | Dunning, Iain ; Gupta, Swati ; Silberholz, John |
Published in: |
INFORMS journal on computing : JOC. - Catonsville, MD : INFORMS, ISSN 1091-9856, ZDB-ID 1316077-1. - Vol. 30.2018, 3, p. 608-624
|
Subject: | computational testing | reproducible research | heuristics | quadratic unconstrained binary optimization | Max-Cut | hyper-heuristics | test bed | interpretable machine learning | Heuristik | Heuristics | Künstliche Intelligenz | Artificial intelligence | Theorie | Theory |
-
Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems
Lagos, Felipe, (2024)
-
The Quadratic Unconstrained Binary Optimization Problem : Theory, Algorithms, and Applications
Punnen, Abraham P., (2022)
-
A large population island framework for the unconstrained binary quadratic problem
Goudet, Olivier, (2024)
- More ...
-
Multistage robust mixed-integer optimization with adaptive partitions
Bertsimas, Dimitris, (2016)
-
Reformulation versus cutting-planes for robust optimization : a computational study
Bertsimas, Dimitris, (2016)
-
Computing in operations research using Julia
Lubin, Miles, (2015)
- More ...