Why Are Bayesian Trend-Cycle Decompositions of U.S. Real GDP So Different?
Year of publication: |
2018
|
---|---|
Authors: | Kim, Jaeho |
Other Persons: | Chon, Sora (contributor) |
Publisher: |
[2018]: [S.l.] : SSRN |
Subject: | USA | United States | Nationaleinkommen | National income | Dekompositionsverfahren | Decomposition method | Bayes-Statistik | Bayesian inference | Zeitreihenanalyse | Time series analysis | Konjunktur | Business cycle | Bruttoinlandsprodukt | Gross domestic product |
Extent: | 1 Online-Ressource (19 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments April 1, 2018 erstellt |
Other identifiers: | 10.2139/ssrn.2908367 [DOI] |
Classification: | C11 - Bayesian Analysis ; E32 - Business Fluctuations; Cycles |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Agnostic output gap estimation and decomposition in large cross-sections
Eckert, Florian, (2019)
-
Trend-cycle decomposition for Peruvian GDP : application of an alternative method
Guillén, Ángel, (2014)
-
Reliable real-time output gap estimates based on a modified Hamilton filter
Quast, Josefine, (2019)
- More ...
-
Permanent and Transitory Shocks to the U.S. Economy : Has Their Importance Been Constant over Time?
Kim, Jaeho, (2017)
-
Bayesian estimation of the long-run trend of the US economy
Kim, Jaeho, (2022)
-
Why are Bayesian trend-cycle decompositions of US real GDP so different?
Kim, Jaeho, (2020)
- More ...