Wishart and Pseudo-Wishart Distributions and Some Applications to Shape Theory,
Suppose thatX~N-m([mu], [Sigma], [Theta]). An expression for the density function is given when[Sigma][greater-or-equal, slanted]0 and/or[Theta]:[greater-or-equal, slanted]0. An extension of Uhlig's result (Uhlig [17]) is expanded for the singular value decomposition of a matrixZof orderN-mwhen the rank (Z)=q[less-than-or-equals, slant]min(N, m). This paper fills an important gap in unifying, for the first time, all Wishart and pseudo-Wishart distributions, whether central or noncentral, whether singular or nonsingular, and applying them in shape analysis. In particular, the shape density and the size-and-shape cone density are obtained for the singular general case.
Year of publication: |
1997
|
---|---|
Authors: | Díaz-García, José A. ; Jáimez, Ramón Gutierrez ; Mardia, Kanti V. |
Published in: |
Journal of Multivariate Analysis. - Elsevier, ISSN 0047-259X. - Vol. 63.1997, 1, p. 73-87
|
Publisher: |
Elsevier |
Keywords: | singular matrix distributions Wishart distribution Pseudo-Wishart distribution Normal matrix variate distribution Noncentral distributions singular values Stiefel manifold shape size-and-shape |
Saved in:
Saved in favorites
Similar items by person
-
Singular random matrix decompositions: Jacobians
Díaz-García, José A., (2005)
-
Singular random matrix decompositions: distributions
Díaz-García, José A., (2005)
-
Singular matrix variate beta distribution
Díaz-García, José A., (2008)
- More ...