EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: isPartOf:"Computational Optimization and Applications"
Narrow search

Narrow search

Year of publication
Subject
All
Theorie 52 Theory 52 Mathematical programming 44 Mathematische Optimierung 44 Optimal control 37 Global convergence 30 Nonlinear programming 29 Global optimization 17 Semidefinite programming 16 Algorithm 14 Optimization 14 Quadratic programming 14 Unconstrained optimization 14 Algorithmus 13 Heuristics 13 Integer programming 12 Nonsmooth optimization 12 Stochastic programming 12 Error estimates 11 Branch-and-bound 10 Constrained optimization 10 Linear programming 10 Regularization 10 Convergence analysis 9 Dynamic programming 9 Nichtlineare Optimierung 9 State constraints 9 Augmented Lagrangian method 8 Combinatorial optimization 8 Semismooth Newton method 8 Superlinear convergence 8 Variational inequality 8 Convex optimization 7 Derivative-free optimization 7 Error bound 7 Multi-objective optimization 7 Robust optimization 7 Sequential quadratic programming 7 Augmented Lagrangian 6 Convergence 6
more ... less ...
Online availability
All
Undetermined 563 Free 54
Type of publication
All
Article 705 Book / Working Paper 3
Type of publication (narrower categories)
All
Article in journal 90 Aufsatz in Zeitschrift 90 Article 54 Konferenzschrift 2 Collection of articles of several authors 1 Sammelwerk 1
Language
All
Undetermined 562 English 146
Author
All
Kanzow, Christian 10 Tröltzsch, Fredi 8 Chen, Jein-Shan 7 Wachsmuth, Daniel 7 Yuan, Xiaoming 7 Chen, Xiaojun 6 Izmailov, A. 6 Martínez, J. 6 Pan, Shaohua 6 Schiela, Anton 6 Wu, Soon-Yi 6 Zhang, Hongchao 6 Fukushima, Masao 5 He, Bingsheng 5 Locatelli, Marco 5 Qi, Liqun 5 Burer, Samuel 4 Casas, Eduardo 4 Grieshammer, Max 4 Hinze, Michael 4 Kunisch, Karl 4 Martí, Rafael 4 Neitzel, Ira 4 Pflug, Lukas 4 Pong, Ting 4 Rösch, Arnd 4 Sherali, Hanif 4 Solodov, M. 4 Stingl, Michael 4 Thi, Hoai Le 4 Toint, Philippe 4 Uihlein, Andrian 4 Xiu, Naihua 4 Yu, Bo 4 Achtziger, Wolfgang 3 Ali, M. 3 Anitescu, Mihai 3 Armand, Paul 3 Avella, Pasquale 3 Birgin, Ernesto 3
more ... less ...
Institution
All
Conference on High Performance Algorithms and Software for Nonlinear Optimization <2004, Ischia> 1 MML <2004, Como> 1
Published in...
All
Computational Optimization and Applications 616 Computational optimization and applications : an international journal 92
Source
All
RePEc 562 ECONIS (ZBW) 90 EconStor 54 USB Cologne (EcoSocSci) 2
Showing 171 - 180 of 708
Cover Image
A unified algorithm for mixed <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$l_{2,p}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>l</mi> <mrow> <mn>2</mn> <mo>,</mo> <mi>p</mi> </mrow> </msub> </math> </EquationSource> </InlineEquation>-minimizations and its application in feature selection
Wang, Liping; Chen, Songcan; Wang, Yuanping - In: Computational Optimization and Applications 58 (2014) 2, pp. 409-421
Recently, matrix norm <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$l_{2,1}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>l</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </math> </EquationSource> </InlineEquation> has been widely applied to feature selection in many areas such as computer vision, pattern recognition, biological study and etc. As an extension of <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$l_1$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>l</mi> <mn>1</mn> </msub> </math> </EquationSource> </InlineEquation> norm, <InlineEquation ID="IEq6"> <EquationSource Format="TEX">$$l_{2,1}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>l</mi> <mrow> <mn>2</mn> <mo>,</mo> <mn>1</mn> </mrow> </msub> </math> </EquationSource> </InlineEquation> matrix norm is often used to find...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010998363
Saved in:
Cover Image
A priori error analysis of the upwind symmetric interior penalty Galerkin (SIPG) method for the optimal control problems governed by unsteady convection diffusion equations
Akman, Tuğba; Yücel, Hamdullah; Karasözen, Bülent - In: Computational Optimization and Applications 57 (2014) 3, pp. 703-729
In this paper, we analyze the symmetric interior penalty Galerkin (SIPG) for distributed optimal control problems governed by unsteady convection diffusion equations with control constraint bounds. A priori error estimates are derived for the semi- and fully-discrete schemes by using piecewise...
Persistent link: https://www.econbiz.de/10010998367
Saved in:
Cover Image
A sparsity preserving stochastic gradient methods for sparse regression
Lin, Qihang; Chen, Xi; Peña, Javier - In: Computational Optimization and Applications 58 (2014) 2, pp. 455-482
We propose a new stochastic first-order algorithm for solving sparse regression problems. In each iteration, our algorithm utilizes a stochastic oracle of the subgradient of the objective function. Our algorithm is based on a stochastic version of the estimate sequence technique introduced by...
Persistent link: https://www.econbiz.de/10010998369
Saved in:
Cover Image
The generalized trust region subproblem
Pong, Ting; Wolkowicz, Henry - In: Computational Optimization and Applications 58 (2014) 2, pp. 273-322
The interval bounded generalized trust region subproblem (GTRS) consists in minimizing a general quadratic objective, q <Subscript>0</Subscript>(x)→min, subject to an upper and lower bounded general quadratic constraint, ℓ≤q <Subscript>1</Subscript>(x)≤u. This means that there are no definiteness assumptions on either quadratic...</subscript></subscript>
Persistent link: https://www.econbiz.de/10010998371
Saved in:
Cover Image
Strategic oscillation for the quadratic multiple knapsack problem
García-Martínez, Carlos; Glover, Fred; Rodriguez, … - In: Computational Optimization and Applications 58 (2014) 1, pp. 161-185
The quadratic multiple knapsack problem (QMKP) consists in assigning a set of objects, which interact through paired profit values, exclusively to different capacity-constrained knapsacks with the aim of maximising total profit. Its many applications include the assignment of workmen to...
Persistent link: https://www.econbiz.de/10010998380
Saved in:
Cover Image
Curvature integrals and iteration complexities in SDP and symmetric cone programs
Kakihara, Satoshi; Ohara, Atsumi; Tsuchiya, Takashi - In: Computational Optimization and Applications 57 (2014) 3, pp. 623-665
In this paper, we study iteration complexities of Mizuno-Todd-Ye predictor-corrector (MTY-PC) algorithms in SDP and symmetric cone programs by way of curvature integrals. The curvature integral is defined along the central path, reflecting the geometric structure of the central path. Integrating...
Persistent link: https://www.econbiz.de/10010998381
Saved in:
Cover Image
A regularized Newton method without line search for unconstrained optimization
Ueda, Kenji; Yamashita, Nobuo - In: Computational Optimization and Applications 59 (2014) 1, pp. 321-351
In this paper, we propose a regularized Newton method without line search. The proposed method controls a regularization parameter instead of a step size in order to guarantee the global convergence. We show that the proposed algorithm has the following convergence properties. (a) The proposed...
Persistent link: https://www.econbiz.de/10010998382
Saved in:
Cover Image
Revisiting several problems and algorithms in continuous location with <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\ell _\tau $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>ℓ</mi> <mi mathvariant="italic">τ</mi> </msub> </math> </EquationSource> </InlineEquation> norms
Blanco, Victor; Puerto, Justo; Ali, Safae El Haj Ben - In: Computational Optimization and Applications 58 (2014) 3, pp. 563-595
This paper addresses the general continuous single facility location problems in finite dimension spaces under possibly different <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$\ell _\tau $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>ℓ</mi> <mi mathvariant="italic">τ</mi> </msub> </math> </EquationSource> </InlineEquation> norms, <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$\tau \ge 1$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi mathvariant="italic">τ</mi> <mo>≥</mo> <mn>1</mn> </mrow> </math> </EquationSource> </InlineEquation>, in the demand points. We analyze the difficulty of this family of problems and revisit...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010998383
Saved in:
Cover Image
A variable fixing version of the two-block nonlinear constrained Gauss–Seidel algorithm for <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\ell _1$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>ℓ</mi> <mn>1</mn> </msub> </math> </EquationSource> </InlineEquation>-regularized least-squares
Porcelli, Margherita; Rinaldi, Francesco - In: Computational Optimization and Applications 59 (2014) 3, pp. 565-589
The problem of finding sparse solutions to underdetermined systems of linear equations is very common in many fields as e.g. signal/image processing and statistics. A standard tool for dealing with sparse recovery is the <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$\ell _1$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>ℓ</mi> <mn>1</mn> </msub> </math> </EquationSource> </InlineEquation>-regularized least-squares approach that has...</equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10011151841
Saved in:
Cover Image
Preface
Chen, Xiaojun; Yamashita, Nobuo - In: Computational Optimization and Applications 59 (2014) 1, pp. 1-4
Persistent link: https://www.econbiz.de/10010937800
Saved in:
  • First
  • Prev
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • Next
  • Last
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...