EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: isPartOf:"Computational Statistics"
Narrow search

Narrow search

Year of publication
Subject
All
EM algorithm 47 Bootstrap 37 Variable selection 36 Model selection 35 Markov chain Monte Carlo 34 Maximum likelihood 25 Robustness 24 Simulation 23 Classification 22 Dynamic programming 22 Bayesian inference 19 Markov decision processes 19 Confidence interval 18 Quantile regression 18 Clustering 17 Consistency 17 Dimension reduction 17 MCMC 16 Survival analysis 15 Functional data 14 Functional data analysis 14 Generalized linear models 14 Importance sampling 14 Longitudinal data 14 Maximum likelihood estimation 14 Nonparametric regression 14 Optimal control 14 Robust estimation 14 Core 13 Linear programming 13 Logistic regression 13 Monte Carlo simulation 13 Density estimation 12 Lasso 12 Optimization 12 Random effects 12 Regularization 12 Shapley value 12 Cluster analysis 11 Gibbs sampling 11
more ... less ...
Online availability
All
Undetermined 6,248 Free 5
Type of publication
All
Article 6,272 Book / Working Paper 17
Type of publication (narrower categories)
All
Collection of articles of several authors 4 Sammelwerk 4 Aufsatzsammlung 2 Handbook 1 Handbuch 1
Language
All
Undetermined 6,277 English 12
Author
All
Balakrishnan, N. 40 Molenberghs, Geert 22 Tang, Man-Lai 22 Kundu, Debasis 21 Paula, Gilberto A. 16 Trenkler, Gotz 16 Lee, Sik-Yum 15 Cordeiro, Gauss M. 14 Hawkins, Douglas M. 14 Tijs, Stef 14 Tian, Guo-Liang 13 Cribari-Neto, Francisco 12 Nadarajah, Saralees 12 Tutz, Gerhard 12 Borm, Peter 11 Chen, Hubert J. 11 Hubert, Mia 11 Lee, Jae Won 11 Lemonte, Artur J. 11 Ortega, Edwin M.M. 11 Poon, Wai-Yin 11 Priebe, Carey E. 11 Rousseeuw, Peter J. 11 Bentler, Peter M. 10 Dodge, Yadolah 10 Hernández-Lerma, Onésimo 10 Agresti, Alan 9 Brown, Morton B. 9 Cavazos-Cadena, Rolando 9 Croux, Christophe 9 Gerlach, Richard 9 Lesaffre, Emmanuel 9 Liang, Hua 9 Lui, Kung-Jong 9 Shin, Dong Wan 9 Wang, Yong 9 D'Urso, Pierpaolo 8 Ferrari, Silvia L.P. 8 Fraiman, Ricardo 8 Gupta, Ramesh C. 8
more ... less ...
Published in...
All
Computational Statistics & Data Analysis 4,738 Computational Statistics 1,534 Springer handbooks of computational statistics 3 Computational Statistics and Data Analysis 2 Computational Statistics and Data Analysis 143 (2020) 106843 1 Computational Statistics and Data Analysis 56 (2012) 1–14 1 Computational Statistics and Data Analysis, Forthcoming 1 Karabatsos, G. (2022). Approximate Bayesian computation using asymptotically normal point estimates. Computational Statistics, 1-38 1 Springer Handbooks of Computational Statistics 1 https://doi.org/10.1016/j.csda.2019.106843 Previous title "HOW MANY PARAMETERS DOES MY KERNEL DENSITY ESTIMATE HAVE?" 1
more ... less ...
Source
All
RePEc 6,272 ECONIS (ZBW) 11 USB Cologne (EcoSocSci) 6
Showing 411 - 420 of 6,289
Cover Image
A sliced inverse regression approach for data stream
Chavent, Marie; Girard, Stéphane; Kuentz-Simonet, Vanessa - In: Computational Statistics 29 (2014) 5, pp. 1129-1152
In this article, we focus on data arriving sequentially by blocks in a stream. A semiparametric regression model involving a common effective dimension reduction (EDR) direction <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\beta $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">β</mi> </math> </EquationSource> </InlineEquation> is assumed in each block. Our goal is to estimate this direction at each arrival of a new block. A...</equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010998439
Saved in:
Cover Image
Penalized marginal likelihood estimation of finite mixtures of Archimedean copulas
Kauermann, Göran; Meyer, Renate - In: Computational Statistics 29 (2014) 1, pp. 283-306
This paper proposes finite mixtures of different Archimedean copula families as a flexible tool for modelling the dependence structure in multivariate data. A novel approach to estimating the parameters in this mixture model is presented by maximizing the penalized marginal likelihood via...
Persistent link: https://www.econbiz.de/10010998442
Saved in:
Cover Image
High-dimensional variable screening and bias in subsequent inference, with an empirical comparison
Bühlmann, Peter; Mandozzi, Jacopo - In: Computational Statistics 29 (2014) 3, pp. 407-430
We review variable selection and variable screening in high-dimensional linear models. Thereby, a major focus is an empirical comparison of various estimation methods with respect to true and false positive selection rates based on 128 different sparse scenarios from semi-real data (real data...
Persistent link: https://www.econbiz.de/10010998445
Saved in:
Cover Image
On the performance of block-bootstrap continuously updated GMM for a class of non-linear conditional moment models
Ouysse, Rachida - In: Computational Statistics 29 (2014) 1, pp. 233-261
In the context of the continuously updated generalized-methods-of-moments (GMM), this study evaluates the finite sample properties of Wald- and criterion-based bootstrap inference for a class of models defined by non-linear conditional moment functions. This work provides simulation evidence...
Persistent link: https://www.econbiz.de/10010998446
Saved in:
Cover Image
Detecting the impact area of BP deepwater horizon oil discharge: an analysis by time varying coefficient logistic models and boosted trees
Li, Tianxi; Gao, Chao; Xu, Meng; Rajaratnam, Bala - In: Computational Statistics 29 (2014) 1, pp. 141-157
The Deepwater Horizon oil discharge in the Gulf of Mexico is considered to be one of the worst environmental disasters to date. The spread of the oil spill and its consequences thereof had various environmental impacts. The National Oceanic and Atmospheric Administration (NOAA) in conjunction...
Persistent link: https://www.econbiz.de/10010998450
Saved in:
Cover Image
On maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions
Hornik, Kurt; Grün, Bettina - In: Computational Statistics 29 (2014) 5, pp. 945-957
Maximum likelihood estimation of the concentration parameter of von Mises–Fisher distributions involves inverting the ratio <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$R_\nu=I_{\nu +1} / I_\nu $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <msub> <mi>R</mi> <mi mathvariant="italic">ν</mi> </msub> <mo>=</mo> <msub> <mi>I</mi> <mrow> <mi mathvariant="italic">ν</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">/</mo> <msub> <mi>I</mi> <mi mathvariant="italic">ν</mi> </msub> </mrow> </math> </EquationSource> </InlineEquation> of modified Bessel functions and computational methods are required to invert these functions using...</equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010998461
Saved in:
Cover Image
Remarks on a parameter estimation for von Mises–Fisher distributions
Baricz, Árpád - In: Computational Statistics 29 (2014) 3, pp. 891-894
We point out an error in the proof of the main result of the paper of Tanabe et al. (Comput Stat 22:145–157, <CitationRef CitationID="CR7">2007</CitationRef>) concerning a parameter estimation for von Mises–Fisher distributions, we correct the proof of the main result and we present a short alternative proof. Copyright Springer-Verlag...</citationref>
Persistent link: https://www.econbiz.de/10010998464
Saved in:
Cover Image
Comparing exponential location parameters with several controls under heteroscedasticity
Malekzadeh, A.; Kharrati-Kopaei, M.; Sadooghi-Alvandi, S. - In: Computational Statistics 29 (2014) 5, pp. 1083-1094
Suppose that random samples are taken from <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$k$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>k</mi> </math> </EquationSource> </InlineEquation> treatment groups and <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$l$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>l</mi> </math> </EquationSource> </InlineEquation> control groups, where the observations in each group have a two-parameter exponential distribution. We consider the problem of constructing simultaneous confidence intervals for the differences between...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010998467
Saved in:
Cover Image
Sparse trace norm regularization
Chen, Jianhui; Ye, Jieping - In: Computational Statistics 29 (2014) 3, pp. 623-639
We study the problem of estimating multiple predictive functions from a dictionary of basis functions in the nonparametric regression setting. Our estimation scheme assumes that each predictive function can be estimated in the form of a linear combination of the basis functions. By assuming that...
Persistent link: https://www.econbiz.de/10010998470
Saved in:
Cover Image
Sparse distance metric learning
Choy, Tze; Meinshausen, Nicolai - In: Computational Statistics 29 (2014) 3, pp. 515-528
Nearest neighbour classification requires a good distance metric. Previous approaches try to learn a quadratic distance metric learning so that observations of different classes are well separated. For high-dimensional problems, where many uninformative variables are present, it is attractive to...
Persistent link: https://www.econbiz.de/10010998471
Saved in:
  • First
  • Prev
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • Next
  • Last
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...