Antczak, Tadeusz - In: Journal of Global Optimization 59 (2014) 4, pp. 757-785
In this paper, we extend the notions of <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$(\Phi ,\rho )$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">Φ</mi> <mo>,</mo> <mi mathvariant="italic">ρ</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation>-invexity and generalized <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$(\Phi ,\rho )$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">Φ</mi> <mo>,</mo> <mi mathvariant="italic">ρ</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation>-invexity to the continuous case and we use these concepts to establish sufficient optimality conditions for the considered class of nonconvex...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>