Moradi, Sirous; Farajzadeh, Ali - In: Journal of Global Optimization 56 (2013) 4, pp. 1689-1697
Let (X, d) be a complete metric space and <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$${TX \longrightarrow X }$$</EquationSource> </InlineEquation> be a mapping with the property d(Tx, Ty) ≤ ad(x, y) + bd(x, Tx) + cd(y, Ty) + ed(y, Tx) + fd(x, Ty) for all <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$${x, y \in X}$$</EquationSource> </InlineEquation>, where 0 a 1, b, c, e, f ≥ 0, a + b + c + e + f=1 and b + c 0. We show that if e...</equationsource></inlineequation></equationsource></inlineequation>