EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: isPartOf:"Statistical Inference for Stochastic Processes"
Narrow search

Narrow search

Year of publication
Subject
All
nonparametric estimation 13 fractional Brownian motion 12 Central limit theorem 9 Malliavin calculus 7 Maximum likelihood estimator 7 asymptotic normality 7 maximum likelihood estimator 7 Asymptotic normality 6 Fractional Brownian motion 6 Parameter estimation 6 consistency 6 diffusion process 6 Ergodic diffusion process 5 Gaussian processes 5 asymptotic efficiency 5 density estimation 5 local time 5 long-range dependence 5 Gaussian process 4 Nonparametric estimation 4 Primary 62F12 4 Random fields 4 Rate of convergence 4 Stochastic differential equation 4 central limit theorem 4 diffusion processes 4 Filtering 3 Likelihood ratio 3 M-estimators 3 Maximum likelihood 3 Model selection 3 Ornstein–Uhlenbeck process 3 Primary 60F05 3 Time-inhomogeneous diffusion process 3 asymptotic expansion 3 counting process 3 deconvolution 3 estimation 3 functional central limit theorem 3 infill asymptotics 3
more ... less ...
Online availability
All
Undetermined 250
Type of publication
All
Article 250
Language
All
Undetermined 250
Author
All
Yoshida, Nakahiro 7 Uchida, Masayuki 5 Kutoyants, Yury 4 Küchler, Uwe 4 Lang, Gabriel 4 León, José 4 Negri, Ilia 4 Bosq, Denis 3 Breton, A. Le 3 Davydov, Youri 3 Dehling, Herold 3 Doukhan, Paul 3 Istas, Jacques 3 Kleptsyna, M.L. 3 Kutoyants, Yu. 3 Pergamenshchikov, S. 3 Schick, Anton 3 Wefelmeyer, Wolfgang 3 Aknouche, Abdelhakim 2 Ayache, Antoine 2 Berlinet, Alain 2 Bertrand, Pierre 2 Biau, Gérard 2 Blanke, D. 2 Brouste, Alexandre 2 Chronopoulou, Alexandra 2 Coeurjolly, Jean-François 2 Dachian, S. 2 Dehay, Dominique 2 Deheuvels, Paul 2 Dorea, C. 2 Fazekas, István 2 Franke, Brice 2 Gonçalves, C. 2 Iacus, Stefano 2 Kleptsyna, Marina 2 Kott, Thomas 2 Koul, Hira 2 Kukush, Alexander 2 Lee, Sangyeol 2
more ... less ...
Published in...
All
Statistical Inference for Stochastic Processes 250
Source
All
RePEc 250
Showing 21 - 30 of 250
Cover Image
Spectral characterization of the quadratic variation of mixed Brownian–fractional Brownian motion
Azmoodeh, Ehsan; Valkeila, Esko - In: Statistical Inference for Stochastic Processes 16 (2013) 2, pp. 97-112
Dzhaparidze and Spreij (Stoch Process Appl, 54:165–174, <CitationRef CitationID="CR5">1994</CitationRef>) showed that the quadratic variation of a semimartingale can be approximated using a randomized periodogram. We show that the same approximation is valid for a special class of continuous stochastic processes. This class contains...</citationref>
Persistent link: https://www.econbiz.de/10010992888
Saved in:
Cover Image
Predicting extinction or explosion in a Galton–Watson branching process
Guttorp, Peter; Perlman, Michael - In: Statistical Inference for Stochastic Processes 16 (2013) 2, pp. 113-125
Based on observations <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$X_1,\dots ,X_n$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo stretchy="false">…</mo> <mo>,</mo> <msub> <mrow> <mi>X</mi> </mrow> <mrow> <mi>n</mi> </mrow> </msub> </mrow> </math> </EquationSource> </InlineEquation> of successive generations of a discrete-parameter Galton–Watson branching process, one wishes to predict whether extinction or explosion will ultimately occur. This problem can be formulated as a simple...</equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992892
Saved in:
Cover Image
Local linear estimation for stochastic processes driven by <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\alpha $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">α</mi> </math> </EquationSource> </InlineEquation>-stable L<InlineEquation ID="IEq2"> <EquationSource ...
Wang, Yunyan; Zhang, Lixin - In: Statistical Inference for Stochastic Processes 16 (2013) 2, pp. 161-171
The <InlineEquation ID="IEq5"> <EquationSource Format="TEX">$$\alpha $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">α</mi> </math> </EquationSource> </InlineEquation>-stable L<InlineEquation ID="IEq6"> <EquationSource Format="TEX">$$\acute{\mathrm{e}}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mover accent="true"> <mi mathvariant="normal">e</mi> <mo>´</mo> </mover> </math> </EquationSource> </InlineEquation>vy motion together with the Poisson process and Brownian motion are the most important examples of L<InlineEquation ID="IEq7"> <EquationSource Format="TEX">$$\acute{\mathrm{e}}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mover accent="true"> <mi mathvariant="normal">e</mi> <mo>´</mo> </mover> </math> </EquationSource> </InlineEquation>vy processes, which form the first class of stochastic processes being studied in the modern...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992893
Saved in:
Cover Image
On rate-optimal nonparametric wavelet regression with long memory moving average errors
Li, Linyuan; Lu, Kewei - In: Statistical Inference for Stochastic Processes 16 (2013) 2, pp. 127-145
We consider the wavelet-based estimators of mean regression function with long memory moving average errors and investigate their asymptotic rates of convergence based on thresholding of empirical wavelet coefficients. We show that these estimators achieve nearly optimal minimax convergence...
Persistent link: https://www.econbiz.de/10010992895
Saved in:
Cover Image
On the asymptotic normality of frequency polygons for strongly mixing spatial processes
Machkouri, Mohamed El - In: Statistical Inference for Stochastic Processes 16 (2013) 3, pp. 193-206
This paper establishes the asymptotic normality of frequency polygons in the context of stationary strongly mixing random fields indexed by <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\mathbb {Z}^d$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>d</mi> </msup> </math> </EquationSource> </InlineEquation>. Our method allows us to consider only minimal conditions on the width bins and provides a simple criterion on the mixing...</equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992896
Saved in:
Cover Image
Distributions of the maximum likelihood and minimum contrast estimators associated with the fractional Ornstein–Uhlenbeck process
Tanaka, Katsuto - In: Statistical Inference for Stochastic Processes 16 (2013) 3, pp. 173-192
We discuss some inference problems associated with the fractional Ornstein–Uhlenbeck (fO–U) process driven by the fractional Brownian motion (fBm). In particular, we are concerned with the estimation of the drift parameter, assuming that the Hurst parameter <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$H$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>H</mi> </math> </EquationSource> </InlineEquation> is known and is in <InlineEquation ID="IEq2"> <EquationSource...</equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992898
Saved in:
Cover Image
On inference for fractional differential equations
Chronopoulou, Alexandra; Tindel, Samy - In: Statistical Inference for Stochastic Processes 16 (2013) 1, pp. 29-61
Based on Malliavin calculus tools and approximation results, we show how to compute a maximum likelihood type estimator for a rather general differential equation driven by a fractional Brownian motion with Hurst parameter <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$H1/2$$</EquationSource> </InlineEquation>. Rates of convergence for the approximation task are provided,...</equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992901
Saved in:
Cover Image
Exact and approximate EM estimation of mutually exciting hawkes processes
Olson, Jamie; Carley, Kathleen - In: Statistical Inference for Stochastic Processes 16 (2013) 1, pp. 63-80
Motivated by the availability of continuous event sequences that trace the social behavior in a population e.g. email, we believe that mutually exciting Hawkes processes provide a realistic and informative model for these sequences. For complex mutually exciting processes, the numerical...
Persistent link: https://www.econbiz.de/10010992904
Saved in:
Cover Image
Goodness-of-fit testing for fractional diffusions
Podolskij, Mark; Wasmuth, Katrin - In: Statistical Inference for Stochastic Processes 16 (2013) 2, pp. 147-159
This paper presents a goodness-of-fit test for the volatility function of a SDE driven by a Gaussian process with stationary and centered increments. Under rather weak assumptions on the Gaussian process, we provide a procedure for testing whether the unknown volatility function lies in a given...
Persistent link: https://www.econbiz.de/10010680540
Saved in:
Cover Image
Improved estimation in a non-Gaussian parametric regression
Pchelintsev, Evgeny - In: Statistical Inference for Stochastic Processes 16 (2013) 1, pp. 15-28
The paper considers the problem of estimating the parameters in a continuous time regression model with a non-Gaussian noise of pulse type. The vector of unknown parameters is assumed to belong to a compact set. The noise is specified by the Ornstein–Uhlenbeck process driven by the mixture of...
Persistent link: https://www.econbiz.de/10010634178
Saved in:
  • First
  • Prev
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • Next
  • Last
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...