EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: isPartOf:"Statistical Inference for Stochastic Processes"
Narrow search

Narrow search

Year of publication
Subject
All
nonparametric estimation 13 fractional Brownian motion 12 Central limit theorem 9 Malliavin calculus 7 Maximum likelihood estimator 7 asymptotic normality 7 maximum likelihood estimator 7 Asymptotic normality 6 Fractional Brownian motion 6 Parameter estimation 6 consistency 6 diffusion process 6 Ergodic diffusion process 5 Gaussian processes 5 asymptotic efficiency 5 density estimation 5 local time 5 long-range dependence 5 Gaussian process 4 Nonparametric estimation 4 Primary 62F12 4 Random fields 4 Rate of convergence 4 Stochastic differential equation 4 central limit theorem 4 diffusion processes 4 Filtering 3 Likelihood ratio 3 M-estimators 3 Maximum likelihood 3 Model selection 3 Ornstein–Uhlenbeck process 3 Primary 60F05 3 Time-inhomogeneous diffusion process 3 asymptotic expansion 3 counting process 3 deconvolution 3 estimation 3 functional central limit theorem 3 infill asymptotics 3
more ... less ...
Online availability
All
Undetermined 250
Type of publication
All
Article 250
Language
All
Undetermined 250
Author
All
Yoshida, Nakahiro 7 Uchida, Masayuki 5 Kutoyants, Yury 4 Küchler, Uwe 4 Lang, Gabriel 4 León, José 4 Negri, Ilia 4 Bosq, Denis 3 Breton, A. Le 3 Davydov, Youri 3 Dehling, Herold 3 Doukhan, Paul 3 Istas, Jacques 3 Kleptsyna, M.L. 3 Kutoyants, Yu. 3 Pergamenshchikov, S. 3 Schick, Anton 3 Wefelmeyer, Wolfgang 3 Aknouche, Abdelhakim 2 Ayache, Antoine 2 Berlinet, Alain 2 Bertrand, Pierre 2 Biau, Gérard 2 Blanke, D. 2 Brouste, Alexandre 2 Chronopoulou, Alexandra 2 Coeurjolly, Jean-François 2 Dachian, S. 2 Dehay, Dominique 2 Deheuvels, Paul 2 Dorea, C. 2 Fazekas, István 2 Franke, Brice 2 Gonçalves, C. 2 Iacus, Stefano 2 Kleptsyna, Marina 2 Kott, Thomas 2 Koul, Hira 2 Kukush, Alexander 2 Lee, Sangyeol 2
more ... less ...
Published in...
All
Statistical Inference for Stochastic Processes 250
Source
All
RePEc 250
Showing 1 - 10 of 250
Cover Image
Difference based estimators and infill statistics
León, José; Ludeña, Carenne - In: Statistical Inference for Stochastic Processes 18 (2015) 1, pp. 1-31
Infill statistics, that is, statistical inference based on very dense observations over a fixed domain has become of late a subject of growing importance. On the other hand, it is a known phenomenon that in many cases infill statistics do not provide optimal rates. The degree of sub-optimality...
Persistent link: https://www.econbiz.de/10011240815
Saved in:
Cover Image
Limit theorems for bifurcating integer-valued autoregressive processes
Bercu, Bernard; Blandin, Vassili - In: Statistical Inference for Stochastic Processes 18 (2015) 1, pp. 33-67
<Para ID="Par1">We study the asymptotic behavior of the weighted least squares estimators of the unknown parameters of bifurcating integer-valued autoregressive processes. Under suitable assumptions on the immigration, we establish the almost sure convergence of our estimators, together with a quadratic strong...</para>
Persistent link: https://www.econbiz.de/10011240816
Saved in:
Cover Image
Parameter maximum likelihood estimation problem for time periodic modulated drift Ornstein Uhlenbeck processes
Dehay, Dominique - In: Statistical Inference for Stochastic Processes 18 (2015) 1, pp. 69-98
<Para ID="Par1">In this paper we investigate the large-sample behaviour of the maximum likelihood estimate (MLE) of the unknown parameter <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\theta $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">θ</mi> </math> </EquationSource> </InlineEquation> for processes following the model <Equation ID="Equ38"> <EquationSource Format="TEX">$$\begin{aligned} d\xi _{t}=\theta f(t)\xi _{t}\,dt+d\mathrm {B}_t, \end{aligned}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink" display="block"> <mrow> <mtable columnspacing="0.5ex"> <mtr> <mtd columnalign="right"> <mrow> <mi>d</mi> <msub> <mi mathvariant="italic">ξ</mi> <mi>t</mi> </msub> <mo>=</mo> <mi mathvariant="italic">θ</mi> <mi>f</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <msub> <mi mathvariant="italic">ξ</mi>...</msub></mrow></mtd></mtr></mtable></mrow></math></equationsource></equationsource></equation></equationsource></equationsource></inlineequation></para>
Persistent link: https://www.econbiz.de/10011240817
Saved in:
Cover Image
On asymptotic distribution of parameter free tests for ergodic diffusion processes
Kutoyants, Yury - In: Statistical Inference for Stochastic Processes 17 (2014) 2, pp. 139-161
We consider two problems of constructing of goodness of fit tests for ergodic diffusion processes. The first one is concerned with a composite basic hypothesis for a parametric class of diffusion processes, which includes the Ornstein–Uhlenbeck and simple switching processes. In this case we...
Persistent link: https://www.econbiz.de/10010793918
Saved in:
Cover Image
Truncated stochastic approximation with moving bounds: convergence
Sharia, Teo - In: Statistical Inference for Stochastic Processes 17 (2014) 2, pp. 163-179
In this paper we consider a wide class of truncated stochastic approximation procedures. These procedures have three main characteristics: truncations with random moving bounds, a matrix valued random step-size sequence, and a dynamically changing random regression function. We establish...
Persistent link: https://www.econbiz.de/10010793919
Saved in:
Cover Image
On goodness-of-fit testing for ergodic diffusion process with shift parameter
Negri, Ilia; Zhou, Li - In: Statistical Inference for Stochastic Processes 17 (2014) 1, pp. 51-73
A problem of goodness-of-fit test for ergodic diffusion processes is presented. In the null hypothesis the drift of the diffusion is supposed to be in a parametric form with unknown shift parameter. Two Cramer–von Mises type test statistics are studied. The first test uses the local time...
Persistent link: https://www.econbiz.de/10010843770
Saved in:
Cover Image
A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise
Neuenkirch, Andreas; Tindel, Samy - In: Statistical Inference for Stochastic Processes 17 (2014) 1, pp. 99-120
We study a least square-type estimator for an unknown parameter in the drift coefficient of a stochastic differential equation with additive fractional noise of Hurst parameter <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$H1/2$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>H</mi> <mo></mo> <mn>1</mn> <mo stretchy="false">/</mo> <mn>2</mn> </mrow> </math> </EquationSource> </InlineEquation>. The estimator is based on discrete time observations of the stochastic differential...</equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992891
Saved in:
Cover Image
Histograms for stationary linear random fields
Carbon, Michel - In: Statistical Inference for Stochastic Processes 17 (2014) 3, pp. 245-266
Denote the integer lattice points in the <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$N$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>N</mi> </math> </EquationSource> </InlineEquation>-dimensional Euclidean space by <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\mathbb {Z}^N$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>N</mi> </msup> </math> </EquationSource> </InlineEquation> and assume that <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$X_\mathbf{n}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>X</mi> <mi mathvariant="bold">n</mi> </msub> </math> </EquationSource> </InlineEquation>, <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$\mathbf{n} \in \mathbb {Z}^N$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi mathvariant="bold">n</mi> <mo>∈</mo> <msup> <mrow> <mi mathvariant="double-struck">Z</mi> </mrow> <mi>N</mi> </msup> </mrow> </math> </EquationSource> </InlineEquation> is a linear random field. Sharp rates of convergence of histogram estimates...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992899
Saved in:
Cover Image
Change point testing for the drift parameters of a periodic mean reversion process
Dehling, Herold; Franke, Brice; Kott, Thomas; Kulperger, Reg - In: Statistical Inference for Stochastic Processes 17 (2014) 1, pp. 1-18
In this paper we investigate the problem of detecting a change in the drift parameters of a generalized Ornstein–Uhlenbeck process which is defined as the solution of <Equation ID="Equ23"> <EquationSource Format="TEX">$$\begin{aligned} dX_t=(L(t)-\alpha X_t) dt + \sigma dB_t \end{aligned}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink" display="block"> <mrow> <mtable columnspacing="0.5ex"> <mtr> <mtd columnalign="right"> <mrow> <mi>d</mi> <msub> <mi>X</mi> <mi>t</mi> </msub> <mo>=</mo> <mrow> <mo stretchy="false">(</mo> <mi>L</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <mo>-</mo> <mi mathvariant="italic">α</mi> <msub> <mi>X</mi> <mi>t</mi> </msub> <mo stretchy="false">)</mo> </mrow> <mi>d</mi> <mi>t</mi> <mo>+</mo> <mi mathvariant="italic">σ</mi>...</mrow></mtd></mtr></mtable></mrow></math></equationsource></equationsource></equation>
Persistent link: https://www.econbiz.de/10010992900
Saved in:
Cover Image
Parameter estimation for the stochastic SIS epidemic model
Pan, Jiafeng; Gray, Alison; Greenhalgh, David; Mao, Xuerong - In: Statistical Inference for Stochastic Processes 17 (2014) 1, pp. 75-98
In this paper we estimate the parameters in the stochastic SIS epidemic model by using pseudo-maximum likelihood estimation (pseudo-MLE) and least squares estimation. We obtain the point estimators and <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$100 (1-\alpha )\%$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mn>100</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>-</mo> <mi mathvariant="italic">α</mi> <mo stretchy="false">)</mo> <mo>%</mo> </mrow> </math> </EquationSource> </InlineEquation> confidence intervals as well as <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$100...</equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010992902
Saved in:
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • Next
  • Last
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...