Grabiszewski, Konrad - In: Theory and Decision 78 (2015) 4, pp. 629-637
The standard model of knowledge, <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$(\varOmega ,P)$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="italic">Ω</mi> <mo>,</mo> <mi>P</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation>, consists of state space, <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\varOmega $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">Ω</mi> </math> </EquationSource> </InlineEquation>, and possibility correspondence, <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$P$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>P</mi> </math> </EquationSource> </InlineEquation>. Usually, it is assumed that <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$P$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>P</mi> </math> </EquationSource> </InlineEquation> satisfies all knowledge axioms (Truth Axiom, Positive Introspection Axiom, and...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>