EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: person:"Ha, Il Do"
Narrow search

Narrow search

Year of publication
Subject
All
Theorie 3 Theory 3 Armed forces 2 GLM 2 Militär 2 generalised linear model 2 ANN 1 Artificial intelligence 1 Bayes-Statistik 1 BayesQR 1 Bayesian inference 1 Forecasting model 1 GLMM 1 Künstliche Intelligenz 1 Logit model 1 Logit-Modell 1 Microeconometrics 1 Mikroökonometrie 1 Neural networks 1 Neuronale Netze 1 Probit model 1 Probit-Modell 1 Prognoseverfahren 1 Regression analysis 1 Regressionsanalyse 1 artificial neural networks 1 binary response data 1 elastic net 1 generalised linear mixed model 1 k-means 1 lasso 1 logit 1 probit 1 random effect 1 random forests 1 ridge 1
more ... less ...
Online availability
All
Undetermined 4
Type of publication
All
Article 5
Type of publication (narrower categories)
All
Article in journal 3 Aufsatz in Zeitschrift 3
Language
All
English 3 Undetermined 2
Author
All
Ha, Il Do 4 Kim, Jong-Min 3 Li, Chuwen 3 HA, IL DO 1 LEE, YOUNGJO 1 Lee, Youngjo 1 NOH, MAENGSEOK 1
more ... less ...
Published in...
All
International journal of productivity and quality management : IJPQM 3 Biometrika 1 Scandinavian Journal of Statistics 1
Source
All
ECONIS (ZBW) 3 RePEc 2
Showing 1 - 5 of 5
Cover Image
Bayesian quantile regression and unsupervised learning methods to the US Army and Navy data
Kim, Jong-Min; Li, Chuwen; Ha, Il Do - In: International journal of productivity and quality … 32 (2021) 1, pp. 92-108
Persistent link: https://www.econbiz.de/10012516411
Saved in:
Cover Image
Generalised linear mixed logit and probit models applied to US Army and Navy data
Kim, Jong-Min; Li, Chuwen; Ha, Il Do - In: International journal of productivity and quality … 30 (2020) 1, pp. 126-142
Persistent link: https://www.econbiz.de/10012254770
Saved in:
Cover Image
Machine learning techniques applied to US army and navy data
Kim, Jong-Min; Li, Chuwen; Ha, Il Do - In: International journal of productivity and quality … 29 (2020) 2, pp. 149-166
Persistent link: https://www.econbiz.de/10012200353
Saved in:
Cover Image
Bias Reduction of Likelihood Estimators in Semiparametric Frailty Models
HA, IL DO; NOH, MAENGSEOK; LEE, YOUNGJO - In: Scandinavian Journal of Statistics 37 (2010) 2, pp. 307-320
Frailty models with a non-parametric baseline hazard are widely used for the analysis of survival data. However, their maximum likelihood estimators can be substantially biased in finite samples, because the number of nuisance parameters associated with the baseline hazard increases with the...
Persistent link: https://www.econbiz.de/10008681750
Saved in:
Cover Image
Comparison of hierarchical likelihood versus orthodox best linear unbiased predictor approaches for frailty models
Ha, Il Do; Lee, Youngjo - In: Biometrika 92 (2005) 3, pp. 717-723
Hierarchical likelihood provides a statistically efficient procedure for frailty models. Recently, a method using the computationally attractive orthodox best linear unbiased predictor has been proposed; this uses Pearson-type estimation. We compare both approaches and discuss their relative...
Persistent link: https://www.econbiz.de/10005447025
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...