EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: person:"Marteau, Clement"
Narrow search

Narrow search

Year of publication
Subject
All
Mathematical programming 2 Mathematische Optimierung 2 Theorie 2 Theory 2 Beurling Lasso 1 Classification 1 Dual certificate 1 Estimation theory 1 Kernel approach 1 Klassifikation 1 L2 contrast 1 Maximum likelihood estimation 1 Maximum-Likelihood-Schätzung 1 Mixture recovery 1 Schätztheorie 1 Statistical distribution 1 Statistische Verteilung 1 Stochastic process 1 Stochastischer Prozess 1 Super-resolution 1 inverse problems 1 model selection 1 parameter estimation 1 rate of convergence 1 two-component contamination mixture model 1 unknown operator 1
more ... less ...
Online availability
All
Free 5 Undetermined 2
Type of publication
All
Book / Working Paper 5 Article 2
Type of publication (narrower categories)
All
Arbeitspapier 4 Graue Literatur 4 Non-commercial literature 4 Working Paper 4
Language
All
English 4 Undetermined 3
Author
All
Gadat, Sébastien 5 Marteau, Clément 5 Castro, Yohann de 2 Maugis-Rabusseau, Cathy 2 Clement, Marteau 1 Gerchinovitz, Sébastien 1 Jean-Michel, Loubes 1 Kahn, Jonas 1 Klein, Thierry 1 Loubes, Jean-Michel 1 Marteau, Clement 1
more ... less ...
Institution
All
Toulouse School of Economics (TSE) 1
Published in...
All
Working papers / TSE : WP 4 Statistics & Risk Modeling 2 TSE Working Papers 1
Source
All
ECONIS (ZBW) 4 RePEc 2 Other ZBW resources 1
Showing 1 - 7 of 7
Cover Image
FastPart: over-parameterized stochastic gradient descent for sparse optimisation on measures
Castro, Yohann de; Gadat, Sébastien; Marteau, Clément - 2023 - Version as of December 9, 2023
Persistent link: https://www.econbiz.de/10014439405
Saved in:
Cover Image
SuperMix: sparse regularization for mixture
Castro, Yohann de; Gadat, Sébastien; Marteau, Clément; … - 2019 - Reprint version of July 20, 2019
Persistent link: https://www.econbiz.de/10012182227
Saved in:
Cover Image
Optimal functional supervised classification with separation condition
Gadat, Sébastien; Gerchinovitz, Sébastien; Marteau, … - 2018
Persistent link: https://www.econbiz.de/10013483733
Saved in:
Cover Image
Parameter recovery in two-component contamination mixtures : the L2 strategy
Gadat, Sébastien; Kahn, Jonas; Marteau, Clément; … - 2016
Persistent link: https://www.econbiz.de/10012216724
Saved in:
Cover Image
Classification with the nearest neighbor rule in general finite dimensional spaces
Gadat, Sébastien; Klein, Thierry; Marteau, Clément - Toulouse School of Economics (TSE) - 2014
Persistent link: https://www.econbiz.de/10011086694
Saved in:
Cover Image
Adaptive estimation for an inverse regression model with unknown operator
Marteau, Clement; Loubes, Jean-Michel - In: Statistics & Risk Modeling 29 (2012) 3, pp. 215-242
Abstract We are interested in the problem of estimating a regression function φ observed with a correlated noise Y  =  φ ( X )+ U . Contrary to the usual regression model, U is not centered conditionaly on X but rather on an observed variable W . Hence this model turns to be a difficult...
Persistent link: https://www.econbiz.de/10014622214
Saved in:
Cover Image
Adaptive estimation for an inverse regression model with unknown operator
Clement, Marteau; Jean-Michel, Loubes - In: Statistics & Risk Modeling 29 (2012) 3, pp. 215-242
We are interested in the problem of estimating a regression function φ observed with a correlated noise Y = φ(X)+U. Contrary to the usual regression model, U is not centered conditionaly on X but rather on an observed variable W. Hence this model turns to be a difficult inverse problem where...
Persistent link: https://www.econbiz.de/10011015727
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...