EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"Functions of random variables"
Narrow search

Narrow search

Year of publication
Subject
All
Distribution of quotient 1 FM-LAD estimator 1 FM-M estimator 1 Functions of random variables 1 System reliability 1 Triangular distribution 1 convolution products 1 distribution functions of random variables 1 elementary solution method 1 generalized functions of random variables 1 laws of large numbers and weak convergence for generalized functions 1 linear discrete system theory 1 non-Gaussian nonstationarity 1 non-homogeneous linear differential equations 1 piecewise defined functions 1 regular sequence 1 robust estimation 1
more ... less ...
Online availability
All
Free 2 Undetermined 1
Type of publication
All
Article 2 Book / Working Paper 1
Language
All
Undetermined 2 English 1
Author
All
Cîrnu, Mircea I. 1 Genç, Ali 1 Gündüz, Selim 1 Phillips, Peter C.B. 1
Institution
All
Cowles Foundation for Research in Economics, Yale University 1
Published in...
All
Cowles Foundation Discussion Papers 1 Romanian Economic Business Review 1 Statistical Papers / Springer 1
Source
All
RePEc 3
Showing 1 - 3 of 3
Cover Image
CALCULATION OF CONVOLUTION PRODUCTS OF PIECEWISE DEFINED FUNCTIONS AND SOME APPLICATIONS
Cîrnu, Mircea I. - In: Romanian Economic Business Review 6 (2012) 1, pp. 41-52
We present elementary proofs to some formulas given without proofs by K. A. West and J. McClellan in 1993, B. L. Evans and J. H. McClellan in 1994, and J. Cavicchi in 2002, for the calculation of the convolution integrals and sums of piecewise defined functions. Unlike “divide and conquer”...
Persistent link: https://www.econbiz.de/10010585827
Saved in:
Cover Image
The distribution of the quotient of two triangularly distributed random variables
Gündüz, Selim; Genç, Ali - In: Statistical Papers 56 (2015) 2, pp. 291-310
The exact distributions of the quotients <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$X/Y$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>X</mi> <mo stretchy="false">/</mo> <mi>Y</mi> </mrow> </math> </EquationSource> </InlineEquation> and <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$Y/(X+Y)$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>Y</mi> <mo stretchy="false">/</mo> <mo stretchy="false">(</mo> <mi>X</mi> <mo>+</mo> <mi>Y</mi> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation> when <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$X$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>X</mi> </math> </EquationSource> </InlineEquation> and <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$Y$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi>Y</mi> </math> </EquationSource> </InlineEquation> are independent and triangularly distributed random variables are obtained. These quotients are useful especially in operations research and reliability...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10011241315
Saved in:
Cover Image
Robust Nonstationary Regression
Phillips, Peter C.B. - Cowles Foundation for Research in Economics, Yale University - 1993
theory for partial sums of generalized functions of random variables. The limit distribution theory for FM-LAD and FM …
Persistent link: https://www.econbiz.de/10005634757
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...