EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"Fuzzy C-medoids clustering"
Narrow search

Narrow search

Year of publication
Subject
All
Fuzzy C-medoids clustering 2 ARIMA model 1 Autoregressive metric 1 Cluster analysis 1 Clusteranalyse 1 Exponential distance 1 Fuzzy sets 1 Fuzzy-Set-Theorie 1 Harmonized Index of Consumer Prices 1 Interval-valued data 1 Mathematical programming 1 Mathematische Optimierung 1 Noise cluster 1 Outlier interval data 1 Outliers 1 Regional cluster 1 Regionales Cluster 1 Robust clustering 1 Time series 1 Time series analysis 1 Zeitreihenanalyse 1
more ... less ...
Online availability
All
Undetermined 2
Type of publication
All
Article 2
Type of publication (narrower categories)
All
Article in journal 1 Aufsatz in Zeitschrift 1
Language
All
English 1 Undetermined 1
Author
All
Massari, Riccardo 2 Cappelli, Carmela 1 D'Urso, Pierpaolo 1 De Giovanni, Livia 1 Giovanni, Livia 1 Lallo, Dario 1 Pierpaolo D’Urso 1
more ... less ...
Published in...
All
Fuzzy optimization and decision making : a journal of modeling and computation under uncertainty 1 METRON 1
Source
All
ECONIS (ZBW) 1 RePEc 1
Showing 1 - 2 of 2
Cover Image
Exponential distance-based fuzzy clustering for interval-valued data
D'Urso, Pierpaolo; Massari, Riccardo; De Giovanni, Livia; … - In: Fuzzy optimization and decision making : a journal of … 16 (2017) 1, pp. 51-70
Persistent link: https://www.econbiz.de/10011805409
Saved in:
Cover Image
Noise fuzzy clustering of time series by autoregressive metric
Pierpaolo D’Urso; Giovanni, Livia; Massari, Riccardo; … - In: METRON 71 (2013) 3, pp. 217-243
We propose a robust fuzzy clustering model for classifying time series, considering the autoregressive metric based. In particular, we suggest a clustering procedure which: 1) considers an autoregressive parameterization of the time series, capable of representing a large class of time series;...
Persistent link: https://www.econbiz.de/10011000654
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...