EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"Generalized cross-validation"
Narrow search

Narrow search

Year of publication
Subject
All
Generalized cross-validation 5 Experimental Design 3 Generalized Cross Validation 3 Model selection 3 Prediction model 3 Ridge Regression 3 Estimation theory 2 Generalized cross validation 2 Nonparametric regression 2 Regression analysis 2 Regressionsanalyse 2 Schätztheorie 2 Adaptive smoothing 1 Additive interactive regression model 1 Bivariate smoothing 1 Composite quantile regression 1 Computational complexity 1 Cross-validation 1 Experiment 1 Forecasting model 1 Fourier transform 1 Generalized Cross-validation (GCV) 1 Generalized additive mixed model 1 Generalized additive model 1 Generalized cross‐validation 1 Generalized profiled estimation 1 Iteratively reweighted least squares procedure 1 Marginal likelihood 1 Markov Chain Monte Carlo 1 Multivariate Adaptive Regression Splines 1 Nichtlineare Regression 1 Nonlinear regression 1 Nonparametric function estimation 1 Nuisance parameters 1 Number of components 1 Oracle property 1 P-splines 1 PCA 1 Partially linear additive models 1 Penalized generalized linear model 1
more ... less ...
Online availability
All
Undetermined 7 Free 5
Type of publication
All
Article 9 Book / Working Paper 4
Type of publication (narrower categories)
All
Working Paper 2 Arbeitspapier 1 Article in journal 1 Aufsatz in Zeitschrift 1 Graue Literatur 1 Non-commercial literature 1
Language
All
Undetermined 8 English 5
Author
All
Czogiel, Irina 3 Lübke, Karsten 3 Weihs, Claus 3 Andrews, Donald W.K. 1 Cao, Jiguo 1 Husson, François 1 Hwang, Changha 1 Josse, Julie 1 Lian, Heng 1 Pan, Huijun 1 Ramsay, James 1 Sapra, Sunil K. 1 Seok, Kyungha 1 Shim, Jooyong 1 Wei, Wen 1 Whang, Yoon-Jae 1 Wood, Simon N. 1 Zhang, Guoyi 1 Zhou, Lan 1
more ... less ...
Institution
All
Cowles Foundation for Research in Economics, Yale University 1 Institut für Wirtschafts- und Sozialstatistik, Universität Dortmund 1
Published in...
All
Computational Statistics 4 Annals of the Institute of Statistical Mathematics 1 Computational Statistics & Data Analysis 1 Cowles Foundation Discussion Papers 1 Journal of the Royal Statistical Society Series B 1 Statistics & Probability Letters 1 Technical Report 1 Technical Reports / Institut für Wirtschafts- und Sozialstatistik, Universität Dortmund 1 Technical report / Sonderforschungsbereich 475 Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund 1 The empirical economics letters : a monthly international journal of economics 1
more ... less ...
Source
All
RePEc 10 ECONIS (ZBW) 2 EconStor 1
Showing 1 - 10 of 13
Cover Image
Multivariate adaptive regression splines for modelling and prediction of wages
Sapra, Sunil K. - In: The empirical economics letters : a monthly … 19 (2020) 10, pp. 1145-1153
Persistent link: https://www.econbiz.de/10012597926
Saved in:
Cover Image
Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models
Wood, Simon N. - In: Journal of the Royal Statistical Society Series B 73 (2011) 1, pp. 3-36
Persistent link: https://www.econbiz.de/10008783791
Saved in:
Cover Image
Smoothing noisy data for irregular regions using penalized bivariate splines on triangulations
Zhou, Lan; Pan, Huijun - In: Computational Statistics 29 (2014) 1, pp. 263-281
employed to regularize the spline fit and generalized cross-validation is used to select the penalty parameters. A simulation …
Persistent link: https://www.econbiz.de/10010847576
Saved in:
Cover Image
Composite support vector quantile regression estimation
Shim, Jooyong; Hwang, Changha; Seok, Kyungha - In: Computational Statistics 29 (2014) 6, pp. 1651-1665
enables us to derive a generalized cross validation (GCV) function that is easier and faster than the conventional cross …
Persistent link: https://www.econbiz.de/10011151858
Saved in:
Cover Image
Selecting the number of components in principal component analysis using cross-validation approximations
Josse, Julie; Husson, François - In: Computational Statistics & Data Analysis 56 (2012) 6, pp. 1869-1879
Cross-validation is a tried and tested approach to select the number of components in principal component analysis (PCA), however, its main drawback is its computational cost. In a regression (or in a non parametric regression) setting, criteria such as the general cross-validation one (GCV)...
Persistent link: https://www.econbiz.de/10010577716
Saved in:
Cover Image
Smoothing splines using compactly supported, positive definite, radial basis functions
Zhang, Guoyi - In: Computational Statistics 27 (2012) 3, pp. 573-584
In this paper, we develop a fast algorithm for a smoothing spline estimator in multivariate regression. To accomplish this, we employ general concepts associated with roughness penalty methods in conjunction with the theory of radial basis functions and reproducing kernel Hilbert spaces. It is...
Persistent link: https://www.econbiz.de/10010998495
Saved in:
Cover Image
Shrinkage estimation for identification of linear components in additive models
Lian, Heng - In: Statistics & Probability Letters 82 (2012) 2, pp. 225-231
In this short paper, we demonstrate that the popular penalized estimation method typically used for variable selection in parametric or semiparametric models can actually provide a way to identify linear components in additive models. Unlike most studies in the literature, we are NOT performing...
Persistent link: https://www.econbiz.de/10010571819
Saved in:
Cover Image
A computer intensive method for choosing the ridge parameter
Lübke, Karsten; Czogiel, Irina; Weihs, Claus - 2004
In this paper we describe a computer intensive method to find the ridge parameter in a prediction oriented linear model. With the help of a factorial experimental design the method is tested and compared to a classical one.
Persistent link: https://www.econbiz.de/10010306248
Saved in:
Cover Image
A computer intensive method for choosing the ridge parameter
Lübke, Karsten; Czogiel, Irina; Weihs, Claus - Institut für Wirtschafts- und Sozialstatistik, … - 2004
In this paper we describe a computer intensive method to find the ridge parameter in a prediction oriented linear model. With the help of a factorial experimental design the method is tested and compared to a classical one.
Persistent link: https://www.econbiz.de/10009295197
Saved in:
Cover Image
A computer intensive method for choosing the ridge parameter
Lübke, Karsten; Czogiel, Irina; Weihs, Claus - 2004
In this paper we describe a computer intensive method to find the ridge parameter in a prediction oriented linear model. With the help of a factorial experimental design the method is tested and compared to a classical one.
Persistent link: https://www.econbiz.de/10010516928
Saved in:
  • 1
  • 2
  • Next
  • Last
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...