EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"Gradient Methods"
Narrow search

Narrow search

Year of publication
Subject
All
Mathematical programming 16 Mathematische Optimierung 16 Theorie 15 Theory 15 gradient methods 10 Gradient methods 7 Algorithm 5 Algorithmus 5 complexity bounds 5 convex optimization 5 Artificial intelligence 3 Convex optimization 3 Künstliche Intelligenz 3 Nonlinear conjugate gradient methods 3 Unconstrained optimization 3 fast gradient methods 3 global convergence 3 reinforcement learning 3 Constrained optimization 2 Convex Optimization 2 Dynamic programming 2 Dynamische Optimierung 2 Estimation theory 2 Explicit and implicit-gradient methods 2 Hessian matrix 2 Learning process 2 Lernprozess 2 Machine Learning and Data Science 2 Monte Carlo simulation 2 Nonlinear optimization 2 Nonlinear programming 2 Projected gradient methods 2 Quasi-Newton methods 2 Schätztheorie 2 Stochastic process 2 Stochastischer Prozess 2 error bounds 2 fully polynomial approximation schemes 2 nonlinear optimization 2 optimal methods 2
more ... less ...
Online availability
All
Free 19 Undetermined 18
Type of publication
All
Article 24 Book / Working Paper 16
Type of publication (narrower categories)
All
Article in journal 12 Aufsatz in Zeitschrift 12 Working Paper 6 Arbeitspapier 5 Graue Literatur 5 Non-commercial literature 5 Thesis 1
more ... less ...
Language
All
English 21 Undetermined 18 German 1
Author
All
Nesterov, Jurij Evgenʹevič 4 NESTEROV, Yurii 3 CHEN, XIONGDA 2 Calzolari, Giorgio 2 DEVOLDER, Olivier 2 GLINEUR, François 2 Gratton, Serge 2 Lange, Rutger-Jan 2 NESTEROV, Yu 2 Panattoni, Lorenzo 2 Russo, Daniel 2 Toint, Philippe 2 Zhang, Hongchao 2 Al-Baali, Mehiddin 1 Asmundis, Roberta De 1 Attouch, Hedy 1 Beck, Amir 1 Bhandari, Jalaj 1 CHERNYSHEVA N.P. 1 Caliciotti, Andrea 1 Cen, Shicong 1 Chaneton, Juan M. 1 Chen, Yuxin 1 Cheng, Chen 1 Chi, Yuejie 1 Dadush, Dan 1 Dijk, Dick van 1 Doikov, Nikita 1 Ewald, Christian-Oliver 1 Fasano, Giovanni 1 Florea, Mihai I. 1 Foschi, P. 1 GAMBAROV L.A. 1 Gaffke, Norbert 1 Gao, Xuefeng 1 Gratton, S. 1 Grub, Martin 1 Gürbüzbalaban, Mert 1 Gürol, Selime 1 Hager, William 1
more ... less ...
Institution
All
Center for Operations Research and Econometrics (CORE), École des Sciences Économiques de Louvain 5 Volkswirtschaftliche Fakultät, Ludwig-Maximilians-Universität München 2 Society for Computational Economics - SCE 1
Published in...
All
Computational Optimization and Applications 6 CORE Discussion Papers 5 Operations research 3 Asia-Pacific Journal of Operational Research (APJOR) 2 CORE discussion papers : DP 2 LIDAM discussion paper CORE 2 MPRA Paper 2 Operations research letters 2 Computers & operations research : and their applications to problems of world concern ; an international journal 1 Computing in Economics and Finance 2002 1 Discussion paper / Tinbergen Institute 1 European journal of operational research : EJOR 1 Management science : journal of the Institute for Operations Research and the Management Sciences 1 Manufacturing & Service Operations Management 1 Mathematical methods of operations research 1 Mathematics of operations research 1 Metrika 1 Operations research forum 1 Quantitative Finance 1 Tinbergen Institute Discussion Paper 1 Vector Optimization 1 ВІСНИК ЕКОНОМІКИ ТРАНСПОРТУ І ПРОМИСЛОВОСТІ 1
more ... less ...
Source
All
RePEc 20 ECONIS (ZBW) 18 BASE 1 EconStor 1
Showing 21 - 30 of 40
Cover Image
Exploiting damped techniques for nonlinear conjugate gradient methods
Al-Baali, Mehiddin; Caliciotti, Andrea; Fasano, Giovanni; … - In: Mathematical methods of operations research 86 (2017) 3, pp. 501-522
Persistent link: https://www.econbiz.de/10011793340
Saved in:
Cover Image
Double smoothing technique for infinite-dimensional optimization problems with applications to optimal control
DEVOLDER, Olivier; GLINEUR, François; NESTEROV, Yurii - Center for Operations Research and Econometrics (CORE), … - 2010
efficient gradient methods. We show that it is possible to reconstruct an approximate primal solution. In order to accelerate …
Persistent link: https://www.econbiz.de/10008642227
Saved in:
Cover Image
A multi-layer line search method to improve the initialization of optimization algorithms
Ivorra, Benjamin; Mohammadi, Bijan; Ramos, Angel Manuel - In: European journal of operational research : EJOR 247 (2015) 3, pp. 711-720
Persistent link: https://www.econbiz.de/10011385268
Saved in:
Cover Image
An efficient gradient method using the Yuan steplength
Asmundis, Roberta De; Serafino, Daniela di; Hager, William - In: Computational Optimization and Applications 59 (2014) 3, pp. 541-563
We propose a new gradient method for quadratic programming, named SDC, which alternates some steepest descent (SD) iterates with some gradient iterates that use a constant steplength computed through the Yuan formula. The SDC method exploits the asymptotic spectral behaviour of the Yuan...
Persistent link: https://www.econbiz.de/10011151838
Saved in:
Cover Image
A fast dual proximal gradient algorithm for convex minimization and applications
Beck, Amir; Teboulle, Marc - In: Operations research letters 42 (2014) 1, pp. 1-6
Persistent link: https://www.econbiz.de/10010259285
Saved in:
Cover Image
Preconditioning and globalizing conjugate gradients in dual space for quadratically penalized nonlinear-least squares problems
Gratton, Serge; Gürol, Selime; Toint, Philippe - In: Computational Optimization and Applications 54 (2013) 1, pp. 1-25
When solving nonlinear least-squares problems, it is often useful to regularize the problem using a quadratic term, a practice which is especially common in applications arising in inverse calculations. A solution method derived from a trust-region Gauss-Newton algorithm is analyzed for such...
Persistent link: https://www.econbiz.de/10010998288
Saved in:
Cover Image
A cyclic projected gradient method
Setzer, Simon; Steidl, Gabriele; Morgenthaler, Jan - In: Computational Optimization and Applications 54 (2013) 2, pp. 417-440
In recent years, convex optimization methods were successfully applied for various image processing tasks and a large number of first-order methods were designed to minimize the corresponding functionals. Interestingly, it was shown recently in Grewenig et al. (<CitationRef CitationID="CR24">2010</CitationRef>) that the simple idea of...</citationref>
Persistent link: https://www.econbiz.de/10010998311
Saved in:
Cover Image
GLOBAL CONVERGENCE OF TWO KINDS OF THREE-TERM CONJUGATE GRADIENT METHODS WITHOUT LINE SEARCH
YIN, LIANG; CHEN, XIONGDA - In: Asia-Pacific Journal of Operational Research (APJOR) 30 (2013) 01, pp. 1250043-1
The conjugate gradient method is widely used in unconstrained optimization, especially for large-scale problems. Recently, Zhang et al. proposed a three-term PRP method (TTPRP) and a three-term HS method (TTHS), both of which can produce sufficient descent conditions. In this paper, the global...
Persistent link: https://www.econbiz.de/10010660899
Saved in:
Cover Image
Verteilungswirkungen anreizorientierter Sozialpolitik : das deutsche Rentenversicherungs- und Steuersystem in der Perspektive dynamischer Lebenszyklusmodelle
Grub, Martin - 2005
Drei große Reformenpakete und eine Reihe kleinerer Begleitmaßnahmen prägen das renten¬politische Erbe der rot-grünen Bundesregierung. Einerseits greifen sie Trends in der Reformpolitik seit Beginn der 90er Jahre auf. So verstärkt die Rentenstrukturreform 2001 beispielsweise die...
Persistent link: https://www.econbiz.de/10009433682
Saved in:
Cover Image
An active set feasible method for large-scale minimization problems with bound constraints
Santis, M.; Pillo, G.; Lucidi, S. - In: Computational Optimization and Applications 53 (2012) 2, pp. 395-423
We are concerned with the solution of the bound constrained minimization problem {minf(x), l≤x≤u}. For the solution of this problem we propose an active set method that combines ideas from projected and nonmonotone Newton-type methods. It is based on an iteration of the form x <Superscript> k+1</Superscript>=[x <Superscript> k </Superscript>+α...</superscript></superscript>
Persistent link: https://www.econbiz.de/10010998290
Saved in:
  • First
  • Prev
  • 1
  • 2
  • 3
  • 4
  • Next
  • Last
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...