EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"Kernel logistic regression"
Narrow search

Narrow search

Year of publication
Subject
All
AdaBoost loss function 3 Classification 3 Data Mining 3 Insurance tariffs 3 Kernel logistic regression 3 Machine learning 3 Regression 3 Robustness 3 Simplicity 3 Support Vector Machine 3 Support Vector Regression 3 influence function 3 kernel logistic regression 3 robustness 3 sensitivity curve 3 statistical learning 3 support vector machine 3 total variation 3 Mustererkennung 2 Pattern recognition 2 Regression analysis 2 Regressionsanalyse 2 Robust statistics 2 Robustes Verfahren 2 Theorie 2 Artificial intelligence 1 Data Mining (STW) 1 Data mining 1 Estimation theory 1 Forecasting model 1 Klassifikation 1 Kraftfahrtversicherung 1 Kraftfahrtversicherung (STW) 1 Künstliche Intelligenz 1 Mathematical programming 1 Mathematische Optimierung 1 Prognoseverfahren 1 Regression (STW) 1 Schätztheorie 1 Theorie (STW) 1
more ... less ...
Online availability
All
Free 6
Type of publication
All
Book / Working Paper 6
Type of publication (narrower categories)
All
Working Paper 4 Arbeitspapier 2 Graue Literatur 2 Non-commercial literature 2
Language
All
English 6
Author
All
Christmann, Andreas 6 Steinwart, Ingo 3
Institution
All
Institut für Wirtschafts- und Sozialstatistik, Universität Dortmund 2
Published in...
All
Technical Report 2 Technical Reports / Institut für Wirtschafts- und Sozialstatistik, Universität Dortmund 2 Technical report / Sonderforschungsbereich 475 Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund 2
Source
All
ECONIS (ZBW) 2 EconStor 2 RePEc 2
Showing 1 - 6 of 6
Cover Image
On a strategy to develop robust and simple tariffs from motor vehicle insurance data
Christmann, Andreas - 2004
nonparametric approach based on a combination of kernel logistic regression and ¡support vector regression. …
Persistent link: https://www.econbiz.de/10010306241
Saved in:
Cover Image
On a strategy to develop robust and simple tariffs from motor vehicle insurance data
Christmann, Andreas - Institut für Wirtschafts- und Sozialstatistik, … - 2004
nonparametric approach based on a combination of kernel logistic regression and ¡support vector regression. …
Persistent link: https://www.econbiz.de/10009295203
Saved in:
Cover Image
On a strategy to develop robust and simple tariffs from motor vehicle insurance data
Christmann, Andreas - 2004
nonparametric approach based on a combination of kernel logistic regression and ¡support vector regression. …
Persistent link: https://www.econbiz.de/10010516923
Saved in:
Cover Image
On robustness properties of convex risk minimization methods for pattern recognition
Christmann, Andreas; Steinwart, Ingo - 2003
. Kernel logistic regression, support vector machines, least squares and the AdaBoost loss function are treated as special …
Persistent link: https://www.econbiz.de/10010306271
Saved in:
Cover Image
On robustness properties of convex risk minimization methods for pattern recognition
Christmann, Andreas; Steinwart, Ingo - Institut für Wirtschafts- und Sozialstatistik, … - 2003
. Kernel logistic regression, support vector machines, least squares and the AdaBoost loss function are treated as special …
Persistent link: https://www.econbiz.de/10009295189
Saved in:
Cover Image
On robustness properties of convex risk minimization methods for pattern recognition
Christmann, Andreas; Steinwart, Ingo - 2003
. Kernel logistic regression, support vector machines, least squares and the AdaBoost loss function are treated as special …
Persistent link: https://www.econbiz.de/10010477496
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...