EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"Large sample correspondence"
Narrow search

Narrow search

Year of publication
Subject
All
Bayesian methods 2 Large sample correspondence 2 Limited information 2 Model misspecification 2 Model selection 2 Quasi likelihood 2 Sandwich covariance 2 Bayes-Statistik 1 Bayesian inference 1 Estimation theory 1 Induktive Statistik 1 Modellierung 1 Sampling 1 Schätztheorie 1 Scientific modelling 1 Statistical inference 1 Statistical theory 1 Statistische Methodenlehre 1 Stichprobenerhebung 1
more ... less ...
Online availability
All
Undetermined 1
Type of publication
All
Article 2
Type of publication (narrower categories)
All
Article in journal 1 Aufsatz in Zeitschrift 1
Language
All
English 1 Undetermined 1
Author
All
Kim, Chae-yŏng 1 Kim, Jae-Young 1
Published in...
All
Journal of Econometrics 1 Journal of econometrics 1
Source
All
ECONIS (ZBW) 1 RePEc 1
Showing 1 - 2 of 2
Cover Image
An alternative quasi likelihood approach, Bayesian analysis and data-based inference for model specification
Kim, Jae-Young - In: Journal of Econometrics 178 (2014) P1, pp. 132-145
establish a large sample correspondence between the classical QL approach and our LI-QL based Bayesian approach. An interesting …
Persistent link: https://www.econbiz.de/10011052341
Saved in:
Cover Image
An alternative quasi likelihood approach, Bayesian analysis and data-based inference for model specification
Kim, Chae-yŏng - In: Journal of econometrics 178 (2014) 1, pp. 132-145
Persistent link: https://www.econbiz.de/10010255455
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...