EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"Local asymptotic minimax bound"
Narrow search

Narrow search

Year of publication
Subject
All
Local asymptotic minimax bound 2 Periodicity 2 Bayes estimators 1 Contiguity 1 Convergence of experiments 1 Diffusions 1 Discontinuous signal 1 Inhomogeneity in time 1 LAMN 1 Langevin stochastic differential equation 1 Likelihood ratio processes 1 Limit theorems 1 Maximum likelihood estimator 1 Maximum likelihood estimators 1 Ornstein Uhlenbeck process 1 Time-inhomogeneous diffusion process 1 convolution theorem 1 diffusions 1 limit theorems 1 local asymptotic minimax bound 1 null recurrence 1 parametric inference 1 semiparametric model 1
more ... less ...
Online availability
All
Undetermined 3
Type of publication
All
Article 3
Language
All
Undetermined 3
Author
All
Dehay, Dominique 1 Höpfner, R. 1 Höpfner, Reinhard 1 Kutoyants, Yu. 1 Kutoyants, Yury 1
Published in...
All
Statistical Inference for Stochastic Processes 3
Source
All
RePEc 3
Showing 1 - 3 of 3
Cover Image
Parameter maximum likelihood estimation problem for time periodic modulated drift Ornstein Uhlenbeck processes
Dehay, Dominique - In: Statistical Inference for Stochastic Processes 18 (2015) 1, pp. 69-98
<Para ID="Par1">In this paper we investigate the large-sample behaviour of the maximum likelihood estimate (MLE) of the unknown parameter <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\theta $$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="italic">θ</mi> </math> </EquationSource> </InlineEquation> for processes following the model <Equation ID="Equ38"> <EquationSource Format="TEX">$$\begin{aligned} d\xi _{t}=\theta f(t)\xi _{t}\,dt+d\mathrm {B}_t, \end{aligned}$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink" display="block"> <mrow> <mtable columnspacing="0.5ex"> <mtr> <mtd columnalign="right"> <mrow> <mi>d</mi> <msub> <mi mathvariant="italic">ξ</mi> <mi>t</mi> </msub> <mo>=</mo> <mi mathvariant="italic">θ</mi> <mi>f</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mrow> <msub> <mi mathvariant="italic">ξ</mi>...</msub></mrow></mtd></mtr></mtable></mrow></math></equationsource></equationsource></equation></equationsource></equationsource></inlineequation></para>
Persistent link: https://www.econbiz.de/10011240817
Saved in:
Cover Image
Estimating discontinuous periodic signals in a time inhomogeneous diffusion
Höpfner, Reinhard; Kutoyants, Yury - In: Statistical Inference for Stochastic Processes 13 (2010) 3, pp. 193-230
Persistent link: https://www.econbiz.de/10008775919
Saved in:
Cover Image
On a Problem of Statistical Inference in Null Recurrent Diffusions
Höpfner, R.; Kutoyants, Yu. - In: Statistical Inference for Stochastic Processes 6 (2003) 1, pp. 25-42
Persistent link: https://www.econbiz.de/10005184592
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...