EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"Statistical inverse problem"
Narrow search

Narrow search

Year of publication
Subject
All
statistical inverse problem 4 Asymptotic normality 3 Lévy measure 2 confidence interval 2 deconvolution 2 deconvolution problem 2 heat equation 2 modality 2 statistical inference 2 Boundary value problem 1 Confidence interval 1 Jump process 1 Nichtparametrisches Verfahren 1 Radon transform 1 Schätztheorie 1 Statistical inverse problem 1 Stochastischer Prozess 1 Tomography 1 Zeitreihenanalyse 1 jump process 1
more ... less ...
Online availability
All
Free 4 Undetermined 1
Type of publication
All
Book / Working Paper 4 Article 1
Type of publication (narrower categories)
All
Working Paper 2
Language
All
English 4 Undetermined 1
Author
All
Bissantz, Nicolai 3 Holzmann, Hajo 3 Kappus, Johanna 2 Reiß, Markus 2
Institution
All
Institut für Wirtschafts- und Sozialstatistik, Universität Dortmund 1 Sonderforschungsbereich 649: Ökonomisches Risiko, Wirtschaftswissenschaftliche Fakultät 1
Published in...
All
Computational Statistics 1 SFB 649 Discussion Paper 1 SFB 649 Discussion Papers 1 Technical Report 1 Technical Reports / Institut für Wirtschafts- und Sozialstatistik, Universität Dortmund 1
Source
All
RePEc 3 EconStor 2
Showing 1 - 5 of 5
Cover Image
Estimation of the characteristics of a Lévy process observed at arbitrary frequency
Kappus, Johanna; Reiß, Markus - 2011
A Lévy process is observed at time points of distance delta until time T. We construct an estimator of the Lévy-Khinchine characteristics of the process and derive optimal rates of convergence simultaneously in T and delta. Thereby, we encompass the usual low- and high-frequency assumptions...
Persistent link: https://www.econbiz.de/10010281558
Saved in:
Cover Image
Estimation of the characteristics of a Lévy process observed at arbitrary frequency
Kappus, Johanna; Reiß, Markus - Sonderforschungsbereich 649: Ökonomisches Risiko, … - 2011
A Lévy process is observed at time points of distance Δ until time T. We construct an estimator of the Lévy-Khinchine characteristics of the process and derive optimal rates of convergence simultaneously in T and Δ. Thereby, we encompass the usual low- and high-frequency assumptions and...
Persistent link: https://www.econbiz.de/10009024915
Saved in:
Cover Image
Statistical inference for inverse problems
Bissantz, Nicolai; Holzmann, Hajo - 2007
In this paper we study statistical inference for certain inverse problems. We go beyond mere estimation purposes and review and develop the construction of confidence intervals and confidence bands in some inverse problems, including deconvolution and the backward heat equation. Further, we...
Persistent link: https://www.econbiz.de/10010300678
Saved in:
Cover Image
Statistical inference for inverse problems
Bissantz, Nicolai; Holzmann, Hajo - Institut für Wirtschafts- und Sozialstatistik, … - 2007
In this paper we study statistical inference for certain inverse problems. We go beyond mere estimation purposes and review and develop the construction of confidence intervals and confidence bands in some inverse problems, including deconvolution and the backward heat equation. Further, we...
Persistent link: https://www.econbiz.de/10009216860
Saved in:
Cover Image
Asymptotics for spectral regularization estimators in statistical inverse problems
Bissantz, Nicolai; Holzmann, Hajo - In: Computational Statistics 28 (2013) 2, pp. 435-453
While optimal rates of convergence in L <Subscript>2</Subscript> for spectral regularization estimators in statistical inverse problems have been much studied, the pointwise asymptotics for these estimators have received very little consideration. Here, we briefly discuss asymptotic expressions for bias and variance...</subscript>
Persistent link: https://www.econbiz.de/10010998462
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...