EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"Volatility prediction"
Narrow search

Narrow search

Year of publication
Subject
All
Forecasting model 13 Prognoseverfahren 13 Volatility 13 Volatilität 13 volatility prediction 9 Theorie 6 Theory 6 Artificial intelligence 5 Börsenkurs 5 Künstliche Intelligenz 5 Share price 5 Capital income 4 Kapitaleinkommen 4 Volatility prediction 4 ARCH model 3 ARCH-Modell 3 Aktienindex 3 Estimation 3 Neural networks 3 Neuronale Netze 3 Schätzung 3 Stock index 3 Time series analysis 3 Zeitreihenanalyse 3 fractional integration 3 high-frequency data 3 intraday seasonality 3 realized variance 3 sampling frequency 3 tick data 3 Algorithm 2 Algorithmus 2 Artificial chemical reaction optimization 2 Artificial neural network 2 Bitcoin prices 2 Extreme learning machine 2 Financial time series forecasting 2 Genetic algorithm 2 LSTM 2 Learning process 2
more ... less ...
Online availability
All
Free 18 CC license 6
Type of publication
All
Article 12 Book / Working Paper 6
Type of publication (narrower categories)
All
Article in journal 10 Aufsatz in Zeitschrift 10 Working Paper 5 Arbeitspapier 4 Graue Literatur 4 Non-commercial literature 4 Article 2
more ... less ...
Language
All
English 16 German 1 Undetermined 1
Author
All
Herrmann, Klaus 3 Teis, Stefan 3 Yu, Weijun 3 Bouri, Elie 2 Gupta, Rangan 2 He, Mengying 2 Mishra, Bijan Bihari 2 Qu, Hui 2 Salisu, Afees A. 2 Alenezy, Abdullah H. 1 Bhandari, Hum Nath 1 Bouchaud, Jean-Philippe 1 Challet, Damien 1 Dhochak, Monika 1 Duan, Huayou 1 Filipović, Damir 1 Jaber, Jamil J. 1 Keshab Raj Dahal 1 Khalilzadeh, Amir 1 Knuth, Nico 1 Kumar, Satish 1 Li, Ying 1 Liu, Guangqiang 1 Mohd Tahir Ismail 1 Morel, Rudy 1 Nastansky, Andreas 1 Nawa Raj Pokhrel 1 Nayak, Sarat 1 Nayak, Sarat Chandra 1 Ragel, Vincent 1 Rao, Amar 1 Rimal, Binod 1 Rimal, Ramchandra 1 Sadam Al-Wadi 1 Wang, Lu 1 Yan, Keyue 1 Zhao, Chenchen 1
more ... less ...
Institution
All
Wirtschafts- und Sozialwissenschaftliche Fakultät, Friedrich-Alexander-Universität Erlangen-Nürnberg 1
Published in...
All
Financial innovation : FIN 3 Risks : open access journal 2 Department of Economics working paper series 1 Financial Innovation 1 IWQW Discussion Paper Series 1 IWQW Discussion Papers 1 IWQW discussion paper series 1 International review of economics & finance : IREF 1 Journal of Risk and Financial Management 1 Journal of risk and financial management : JRFM 1 Quantitative finance 1 Quantitative finance and economics 1 Research in international business and finance 1 Research paper series / Swiss Finance Institute 1 Statistische Diskussionsbeiträge 1
more ... less ...
Source
All
ECONIS (ZBW) 14 EconStor 3 RePEc 1
Showing 1 - 10 of 18
Cover Image
Hybrid ML models for volatility prediction in financial risk management
Kumar, Satish; Rao, Amar; Dhochak, Monika - In: International review of economics & finance : IREF 98 (2025), pp. 1-18
Persistent link: https://www.econbiz.de/10015331616
Saved in:
Cover Image
Anwendung von Deep Learning in der Prognose der Volatilität des DAX : ein Vergleich der Prognosegüte von GARCH und LSTM
Knuth, Nico; Nastansky, Andreas - 2025
Persistent link: https://www.econbiz.de/10015332574
Saved in:
Cover Image
Path shadowing Monte Carlo
Morel, Rudy; Bouchaud, Jean-Philippe - In: Quantitative finance 24 (2024) 9, pp. 1199-1225
Persistent link: https://www.econbiz.de/10015196880
Saved in:
Cover Image
Machine learning-based analysis of volatility quantitative investment strategies for American financial stocks
Yan, Keyue; Li, Ying - In: Quantitative finance and economics 8 (2024) 2, pp. 364-386
Persistent link: https://www.econbiz.de/10015133088
Saved in:
Cover Image
Implementation of deep learning models in predicting ESG index volatility
Bhandari, Hum Nath; Nawa Raj Pokhrel; Rimal, Ramchandra; … - In: Financial innovation : FIN 10 (2024), pp. 1-24
factors to delineate the cone of uncertainty in market volatility prediction. The performance of the constructed models was …
Persistent link: https://www.econbiz.de/10015372523
Saved in:
Cover Image
The relationship between renewable energy attention and volatility : a HAR model with markov time-varying transition probability
Duan, Huayou; Zhao, Chenchen; Wang, Lu; Liu, Guangqiang - In: Research in international business and finance 71 (2024), pp. 1-17
Persistent link: https://www.econbiz.de/10015062160
Saved in:
Cover Image
Multi-timescale recurrent neural networks beat rough volatility for intraday volatility prediction
Challet, Damien; Ragel, Vincent - In: Risks : open access journal 12 (2024) 6, pp. 1-10
We extend recurrent neural networks to include several flexible timescales for each dimension of their output, which mechanically improves their abilities to account for processes with long memory or highly disparate timescales. We compare the ability of vanilla and extended long short-term...
Persistent link: https://www.econbiz.de/10014636848
Saved in:
Cover Image
The predictive power of Bitcoin prices for the realized volatility of US stock sector returns
Bouri, Elie; Salisu, Afees A.; Gupta, Rangan - In: Financial innovation : FIN 9 (2023) 1, pp. 1-22
This paper is motivated by Bitcoin's rapid ascension into mainstream finance and recent evidence of a strong relationship between Bitcoin and US stock markets. It is also motivated by a lack of empirical studies on whether Bitcoin prices contain useful information for the volatility of US stock...
Persistent link: https://www.econbiz.de/10014289060
Saved in:
Cover Image
Predicting stock market volatility using MODWT with HyFIS and FS.HGD models
Alenezy, Abdullah H.; Mohd Tahir Ismail; Sadam Al-Wadi; … - In: Risks : open access journal 11 (2023) 7, pp. 1-16
We enhance the precision of predicting daily stock market price volatility using the maximum overlapping discrete wavelet transform (MODWT) spectral model and two learning approaches: the heuristic gradient descent (FS.HGD) and hybrid neural fuzzy inference system (HyFIS). The FS.HGD approach...
Persistent link: https://www.econbiz.de/10014335933
Saved in:
Cover Image
Predicting volatility based on interval regression models
Qu, Hui; He, Mengying - In: Journal of Risk and Financial Management 15 (2022) 12, pp. 1-21
improve the volatility prediction accuracy compared to the point-data-based GARCH model. (2) Incorporating the heterogeneous … structure significantly improves the volatility prediction accuracy, and the corresponding models significantly outperform the …
Persistent link: https://www.econbiz.de/10014332720
Saved in:
  • 1
  • 2
  • Next
  • Last
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...