EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"Weighted random variables"
Narrow search

Narrow search

Year of publication
Subject
All
Compound Poisson distribution 1 Concentration function 1 Extreme value distribution 1 Kolmogorov norm 1 Weighted random variables 1 maximal autoregressive process 1 maximum of weighted random variables 1 stability coefficients 1
more ... less ...
Online availability
All
Undetermined 2
Type of publication
All
Article 2
Language
All
Undetermined 2
Author
All
Elijio, A. 1 Inagaki, Nobuo 1 Čekanavičius, V. 1
Published in...
All
Annals of the Institute of Statistical Mathematics 2
Source
All
RePEc 2
Showing 1 - 2 of 2
Cover Image
Compound Poisson approximation to weighted sums of symmetric discrete variables
Elijio, A.; Čekanavičius, V. - In: Annals of the Institute of Statistical Mathematics 67 (2015) 1, pp. 195-210
The weighted sum <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$S=w_1S_1+w_2S_2+\cdots +w_NS_N$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mi>S</mi> <mo>=</mo> <msub> <mi>w</mi> <mn>1</mn> </msub> <msub> <mi>S</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>w</mi> <mn>2</mn> </msub> <msub> <mi>S</mi> <mn>2</mn> </msub> <mo>+</mo> <mo>⋯</mo> <mo>+</mo> <msub> <mi>w</mi> <mi>N</mi> </msub> <msub> <mi>S</mi> <mi>N</mi> </msub> </mrow> </math> </EquationSource> </InlineEquation> is approximated by compound Poisson distribution. Here <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$S_i$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>S</mi> <mi>i</mi> </msub> </math> </EquationSource> </InlineEquation> are sums of symmetric independent identically distributed discrete random variables, and <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$w_i$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msub> <mi>w</mi> <mi>i</mi> </msub> </math> </EquationSource> </InlineEquation>...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10011152091
Saved in:
Cover Image
Asymptotic distribution of maximal autoregressive process with weight tending to 1
Inagaki, Nobuo - In: Annals of the Institute of Statistical Mathematics 46 (1994) 4, pp. 633-640
Persistent link: https://www.econbiz.de/10005169158
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...