EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"high dimensional models"
Narrow search

Narrow search

Year of publication
Subject
All
high-dimensional models 22 Estimation theory 19 Schätztheorie 19 sparsity 13 high dimensional models 9 Nichtparametrisches Verfahren 8 Nonparametric statistics 8 penalization 8 Generalized method of moments 7 Regression analysis 7 Regressionsanalyse 7 over-identification 7 sieve method 7 High-dimensional models 6 Method of moments 6 Momentenmethode 6 Penalty parameter selection 5 bootstrap 5 cross-validation 5 heteroskedasticity 5 moment restriction 5 penalized M-estimation 5 regularization methods 5 Heteroscedasticity 4 Theorie 4 Theory 4 linear regression 4 many regressors 4 non-sparse signal recovery 4 shrinkage 4 standard errors 4 Causality analysis 3 Econometrics 3 Heteroskedastizität 3 Induktive Statistik 3 Kausalanalyse 3 LIML 3 MSE 3 Punishment 3 Statistical inference 3
more ... less ...
Online availability
All
Free 40
Type of publication
All
Book / Working Paper 37 Article 3
Type of publication (narrower categories)
All
Working Paper 32 Arbeitspapier 19 Graue Literatur 19 Non-commercial literature 19 Article in journal 4 Aufsatz in Zeitschrift 4
Language
All
English 36 Undetermined 4
Author
All
Dong, Chaohua 7 Gao, Jiti 7 Chernozhukov, Victor 6 Linton, Oliver 6 Cattaneo, Matias D. 4 Hansen, Christian Bailey 4 Jansson, Michael 4 Liao, Yuan 4 Newey, Whitney K. 4 Tchuente, Guy 4 Ahrens, Achim 3 Carrasco, Marine 3 Sørensen, Jesper R.-V. 3 Wiemann, Thomas 3 Četverikov, Denis N. 3 Ahelegbey, Daniel Felix 2 Belloni, Alexandre 2 Billio, Monica 2 Casarin, Roberto 2 Hansen, Christian 2 Kaul, Abhishek 2 Kock, Anders Bredahl 2 Kozbur, Damian 2 Nibbering, Didier 2 Schaffer, Mark E. 2 Sørensen, Jesper R-V 2 Bernardi, Mauro 1 Bianchi, Daniele 1 Bianco, Nicolas 1 Chetverikov, Denis N. 1 Dovì, Max-Sebastian 1 Gautier, Eric 1 Hansen, Christian B. 1 Linton, Oliver Bruce 1 Mavroeidis, Sophocles 1 Schaffer, Mark E 1 Tchuente Nguembu, Guy 1 Tsybakov, Alexandre 1 éCetverikov, Denis N. 1
more ... less ...
Institution
All
Centre Interuniversitaire de Recherche en Analyse des Organisations (CIRANO) 1 Dipartimento di Economia, Università Ca' Foscari Venezia 1 HAL 1 School of Economics and Management, University of Aarhus 1
Published in...
All
CEMMAP working papers / Centre for Microdata Methods and Practice 9 cemmap working paper 9 Working paper / Department of Econometrics and Business Statistics, Monash University 4 Discussion papers / University of Kent, School of Economics 2 Journal of business & economic statistics : JBES ; a publication of the American Statistical Association 2 School of Economics Discussion Papers 2 CIRANO Working Papers 1 CREATES Research Papers 1 Cambridge working papers in economics 1 Discussion paper series / IZA 1 Discussion papers / Department of Economics, University of Copenhagen 1 IZA Discussion Papers 1 Working Paper 1 Working Papers / Dipartimento di Economia, Università Ca' Foscari Venezia 1 Working Papers / HAL 1 Working paper series / University of Zurich, Department of Economics 1 Working papers 1
more ... less ...
Source
All
ECONIS (ZBW) 23 EconStor 13 RePEc 4
Showing 1 - 10 of 40
Cover Image
Model averaging and double machine learning
Ahrens, Achim; Hansen, Christian Bailey; Schaffer, Mark E. - 2025
Persistent link: https://www.econbiz.de/10015372755
Saved in:
Cover Image
Model Averaging and Double Machine Learning
Ahrens, Achim; Hansen, Christian B.; Schaffer, Mark E; … - 2024
This paper discusses pairing double/debiased machine learning (DDML) with stacking, a model averaging method for combining multiple candidate learners, to estimate structural parameters. We introduce two new stacking approaches for DDML: short-stacking exploits the cross-fitting step of DDML to...
Persistent link: https://www.econbiz.de/10014469867
Saved in:
Cover Image
Model averaging and double machine learning
Ahrens, Achim; Hansen, Christian Bailey; Schaffer, Mark E. - 2024
This paper discusses pairing double/debiased machine learning (DDML) with stacking, a model averaging method for combining multiple candidate learners, to estimate structural parameters. We introduce two new stacking approaches for DDML: short-stacking exploits the cross-fitting step of DDML to...
Persistent link: https://www.econbiz.de/10014454715
Saved in:
Cover Image
Variational inference for large Bayesian vector autoregressions
Bernardi, Mauro; Bianchi, Daniele; Bianco, Nicolas - In: Journal of business & economic statistics : JBES ; a … 42 (2024) 3, pp. 1066-1082
Persistent link: https://www.econbiz.de/10015053533
Saved in:
Cover Image
A ridge-regularized jackknifed Anderson-Rubin test
Dovì, Max-Sebastian; Kock, Anders Bredahl; Mavroeidis, … - In: Journal of business & economic statistics : JBES ; a … 42 (2024) 3, pp. 1083-1094
Persistent link: https://www.econbiz.de/10015053534
Saved in:
Cover Image
A high-dimensional multinomial logit
Nibbering, Didier - 2023
Persistent link: https://www.econbiz.de/10014452593
Saved in:
Cover Image
Analytic and bootstrap-after-cross-validation methods for selecting penalty parameters of high-dimensional M-estimators
Chetverikov, Denis N.; Sørensen, Jesper R.-V. - 2022
We develop two new methods for selecting the penalty parameter for the e1-penalized high-dimensional M-estimator, which we refer to as the analytic and bootstrap-after-cross-validation methods. For both methods, we derive nonasymptotic error bounds for the corresponding e1-penalized M-estimator...
Persistent link: https://www.econbiz.de/10013253002
Saved in:
Cover Image
Analytic and bootstrap-after-cross-validation methods for selecting penalty parameters of high-dimensional M-estimators
Četverikov, Denis N.; Sørensen, Jesper R.-V. - 2022
We develop two new methods for selecting the penalty parameter for the e1-penalized high-dimensional M-estimator, which we refer to as the analytic and bootstrap-after-cross-validation methods. For both methods, we derive nonasymptotic error bounds for the corresponding e1-penalized M-estimator...
Persistent link: https://www.econbiz.de/10012800795
Saved in:
Cover Image
Analytic and bootstrap-after-cross-validation methods for selecting penalty parameters of highdimensional M-estimators
éCetverikov, Denis N.; Sørensen, Jesper R-V - 2021
We develop two new methods for selecting the penalty parameter for the l1 -penalized high-dimensional M-estimator, which we refer to as the analytic and bootstrap-aftercross-validation methods. For both methods, we derive nonasymptotic error bounds for the corresponding l1 -penalized M-estimator...
Persistent link: https://www.econbiz.de/10012621158
Saved in:
Cover Image
Analytic and bootstrap-after-cross-validation methods for selecting penalty parameters of high-dimensional M-estimators
Sørensen, Jesper R.-V.; Četverikov, Denis N. - 2021
Persistent link: https://www.econbiz.de/10012627495
Saved in:
  • 1
  • 2
  • 3
  • 4
  • Next
  • Last
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...