EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"l1 regression"
Narrow search

Narrow search

Year of publication
Subject
All
L1 regression 4 nonparametric regression 4 Fermat's problem 2 LASSO 2 Skew-normal 2 convex approximation 2 dimension reduction 2 l1 regression 2 median absolute deviation 2 minimum average variance estimator 2 monotone regression 2 pool adjacent violators algorithm 2 quadratic approximation 2 quantile regression 2 regression analysis 2 reweighted least squares 2 robust estimation 2 shape constraints 2 total variation semi-norm 2 Nichtparametrisches Verfahren 1 Robustes Verfahren 1 Schätztheorie 1 Theorie 1
more ... less ...
Online availability
All
Free 6
Type of publication
All
Book / Working Paper 6
Type of publication (narrower categories)
All
Working Paper 2
Language
All
English 3 Undetermined 3
Author
All
Adcock, Chris 2 Bissantz, Nicolai 2 Dümbgen, Lutz 2 Härdle, Wolfgang 2 Munk, Axel 2 Shutes, Karl 2 Stratmann, Bernd 2 Čížek, Pavel 2
more ... less ...
Institution
All
Volkswirtschaftliche Fakultät, Ludwig-Maximilians-Universität München 2 Institut für Wirtschafts- und Sozialstatistik, Universität Dortmund 1 Sonderforschungsbereich 373, Quantifikation und Simulation ökonomischer Prozesse, Wirtschaftswissenschaftliche Fakultät 1
Published in...
All
MPRA Paper 2 SFB 373 Discussion Paper 1 SFB 373 Discussion Papers 1 Technical Report 1 Technical Reports / Institut für Wirtschafts- und Sozialstatistik, Universität Dortmund 1
Source
All
RePEc 4 EconStor 2
Showing 1 - 6 of 6
Cover Image
Regularized Extended Skew-Normal Regression
Shutes, Karl; Adcock, Chris - Volkswirtschaftliche Fakultät, … - 2013
This paper considers the impact of using the regularisation techniques for the analysis of the extended skew-normal distribution. The approach is estimated using a number of techniques and compared to OLS based LASSO and ridge regressions in addition to non- constrained skew-normal regression.
Persistent link: https://www.econbiz.de/10011110010
Saved in:
Cover Image
Regularized Skew-Normal Regression
Shutes, Karl; Adcock, Chris - Volkswirtschaftliche Fakultät, … - 2013
This paper considers the impact of using the regularisation techniques for the analysis of the extended skew-normal distribution. The approach is estimated using a number of techniques and compared to OLS based LASSO and ridge regressions in addition to non- constrained skew-normal regression.
Persistent link: https://www.econbiz.de/10011112040
Saved in:
Cover Image
Convergence analysis of generalized iteratively reweighted least squares algorithms on convex function spaces
Bissantz, Nicolai; Dümbgen, Lutz; Munk, Axel; … - 2008
The computation of robust regression estimates often relies on minimization of a convex functional on a convex set. In this paper we discuss a general technique for a large class of convex functionals to compute the minimizers iteratively which is closely related to majorization-minimization...
Persistent link: https://www.econbiz.de/10010300699
Saved in:
Cover Image
Convergence analysis of generalized iteratively reweighted least squares algorithms on convex function spaces
Bissantz, Nicolai; Dümbgen, Lutz; Munk, Axel; … - Institut für Wirtschafts- und Sozialstatistik, … - 2008
The computation of robust regression estimates often relies on minimization of a convex functional on a convex set. In this paper we discuss a general technique for a large class of convex functionals to compute the minimizers iteratively which is closely related to majorization-minimization...
Persistent link: https://www.econbiz.de/10009216893
Saved in:
Cover Image
Robust adaptive estimation of dimension reduction space
Čížek, Pavel; Härdle, Wolfgang - 2003
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy tailed distributions. We show that the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively straightforward way...
Persistent link: https://www.econbiz.de/10010296438
Saved in:
Cover Image
Robust adaptive estimation of dimension reduction space
Čížek, Pavel; Härdle, Wolfgang - Sonderforschungsbereich 373, Quantifikation und … - 2003
Most dimension reduction methods based on nonparametric smoothing are highly sensitive to outliers and to data coming from heavy tailed distributions. We show that the recently proposed MAVE and OPG methods by Xia et al. (2002) allow us to make them robust in a relatively straightforward way...
Persistent link: https://www.econbiz.de/10010983843
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...