EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"method of sieves."
Narrow search

Narrow search

Year of publication
Subject
All
method of sieves 3 nonlinear autoregressive models 2 semi-nonparametric models 2 time-series 2 Gibbs random fields 1 Method of sieves 1 Mixed logit 1 Mixtures of distributions 1 Nichtlineares Verfahren 1 Random taste heterogeneity 1 Stochastischer Prozess 1 Theorie 1 binomial panel 1 break method of sieves 1 consistency 1 method of sieves. 1 mixed logit 1 mixtures of distributions 1 nonparametric 1 nonparametric estimation 1 one‐point systems 1 quasilocality 1 random taste heterogeneity 1 semi-nonparametric 1 value of time 1 willingness-to-pay 1
more ... less ...
Online availability
All
Free 5 Undetermined 1
Type of publication
All
Book / Working Paper 4 Article 2
Type of publication (narrower categories)
All
Working Paper 1
Language
All
Undetermined 5 English 1
Author
All
Fosgerau, Mogens 3 Blasques, Francisco 2 Hess, Stephane 2 Dachian, S. 1 Nielsen, Søren Feodor 1
Institution
All
Volkswirtschaftliche Fakultät, Ludwig-Maximilians-Universität München 2 Tinbergen Instituut 1
Published in...
All
MPRA Paper 2 European Transport \ Trasporti Europei 1 Statistical Inference for Stochastic Processes 1 Tinbergen Institute Discussion Paper 1 Tinbergen Institute Discussion Papers 1
Source
All
RePEc 5 EconStor 1
Showing 1 - 6 of 6
Cover Image
Transformed Polynomials for Nonlinear Autoregressive Models of the Conditional Mean
Blasques, Francisco - 2012
This paper proposes a new set of transformed polynomial functions that provide a flexible setting for nonlinear autoregressive modeling of the conditional mean while at the same time ensuring the strict stationarity, ergodicity, fading memory and existence of moments of the implied stochastic...
Persistent link: https://www.econbiz.de/10010326532
Saved in:
Cover Image
Transformed Polynomials for Nonlinear Autoregressive Models of the Conditional Mean
Blasques, Francisco - Tinbergen Instituut - 2012
This paper proposes a new set of transformed polynomial functions that provide a flexible setting for nonlinear autoregressive modeling of the conditional mean while at the same time ensuring the strict stationarity, ergodicity, fading memory and existence of moments of the implied stochastic...
Persistent link: https://www.econbiz.de/10011257412
Saved in:
Cover Image
A comparison of methods for representing random taste heterogeneity in discrete choice models
Fosgerau, Mogens; Hess, Stephane - In: European Transport \ Trasporti Europei (2009) 42, pp. 1-25
This paper reports the findings of a systematic study using Monte Carlo experiments and a real dataset aimed at comparing the performance of various ways of specifying random taste heterogeneity in a discrete choice model. Specifically, the analysis compares the performance of two recent...
Persistent link: https://www.econbiz.de/10010538999
Saved in:
Cover Image
Competing methods for representing random taste heterogeneity in discrete choice models
Fosgerau, Mogens; Hess, Stephane - Volkswirtschaftliche Fakultät, … - 2008
This paper reports the findings of a systematic study using Monte Carlo experiments and a real dataset aimed at comparing the performance of various ways of specifying random taste heterogeneity in a discrete choice model. Specifically, the analysis compares the performance of two recent...
Persistent link: https://www.econbiz.de/10005835496
Saved in:
Cover Image
Deconvoluting preferences and errors: a model for binomial panel data
Fosgerau, Mogens; Nielsen, Søren Feodor - Volkswirtschaftliche Fakultät, … - 2007
Let U be an unobserved random variable with compact support and let e_t be unobserved i.i.d. random errors also with compact support. Observe the random variables V_t, X_t, and Y_t = 1{U +d X_t+e_t V_t}, t = T, where d is an unknown parameter. This type of model is relevant for many stated...
Persistent link: https://www.econbiz.de/10005623369
Saved in:
Cover Image
Nonparametric Estimation for Gibbs Random Fields Specified Through One‐Point Systems
Dachian, S. - In: Statistical Inference for Stochastic Processes 1 (1998) 3, pp. 245-264
Persistent link: https://www.econbiz.de/10005169117
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...