EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"non-Archimedean utility"
Narrow search

Narrow search

Year of publication
Subject
All
Additively separable 2 Intertemporal 2 Non-Archimedean utility 2 Nonstandard analysis 2 Uncertainty 2 Utilitarian 2 Erwartungsnutzen 1 Expected utility 1 Nutzen 1 Nutzenfunktion 1 Präferenztheorie 1 Risiko 1 Risk 1 Theory of preferences 1 Utilitarianism 1 Utilitarismus 1 Utility 1 Utility function 1 additive 1 generalized utilitarian 1 hyperreal 1 intergenerational choice 1 intertemporal choice 1 lexicographical utility 1 linearly ordered abelian group 1 non-Archimedean utility 1 nonstandard analysis 1 risk 1 separable 1 uncertainty 1 variable-population social choice 1
more ... less ...
Online availability
All
Free 1 Undetermined 1
Type of publication
All
Article 2 Book / Working Paper 1
Type of publication (narrower categories)
All
Article in journal 1 Aufsatz in Zeitschrift 1
Language
All
Undetermined 2 English 1
Author
All
Pivato, Marcus 3
Institution
All
Volkswirtschaftliche Fakultät, Ludwig-Maximilians-Universität München 1
Published in...
All
MPRA Paper 1 Theory and Decision 1 Theory and decision : an international journal for multidisciplinary advances in decision science 1
Source
All
RePEc 2 ECONIS (ZBW) 1
Showing 1 - 3 of 3
Cover Image
Additive representation of separable preferences over infinite products
Pivato, Marcus - Volkswirtschaftliche Fakultät, … - 2011
Let X be a set of states, and let I be an infinite indexing set. Our first main result states that any separable, permutation-invariant preference order () on X^I admits an additive representation. That is: there exists a linearly ordered abelian group A and a `utility function' u:X--A such...
Persistent link: https://www.econbiz.de/10008805853
Saved in:
Cover Image
Additive representation of separable preferences over infinite products
Pivato, Marcus - In: Theory and Decision 77 (2014) 1, pp. 31-83
Let <InlineEquation ID="IEq1"> <EquationSource Format="TEX">$$\mathcal{X }$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="script">X</mi> </math> </EquationSource> </InlineEquation> be a set of outcomes, and let <InlineEquation ID="IEq2"> <EquationSource Format="TEX">$$\mathcal{I }$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mi mathvariant="script">I</mi> </math> </EquationSource> </InlineEquation> be an infinite indexing set. This paper shows that any separable, permutation-invariant preference order <InlineEquation ID="IEq3"> <EquationSource Format="TEX">$$(\succcurlyeq )$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <mrow> <mo stretchy="false">(</mo> <mo>≽</mo> <mo stretchy="false">)</mo> </mrow> </math> </EquationSource> </InlineEquation> on <InlineEquation ID="IEq4"> <EquationSource Format="TEX">$$\mathcal{X }^\mathcal{I }$$</EquationSource> <EquationSource Format="MATHML"> <math xmlns:xlink="http://www.w3.org/1999/xlink"> <msup> <mrow> <mi mathvariant="script">X</mi> </mrow> <mi mathvariant="script">I</mi> </msup> </math> </EquationSource> </InlineEquation> admits an additive...</equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation></equationsource></equationsource></inlineequation>
Persistent link: https://www.econbiz.de/10010988745
Saved in:
Cover Image
Additive representation of separable preferences over infinite products
Pivato, Marcus - In: Theory and decision : an international journal for … 77 (2014) 1, pp. 31-83
Persistent link: https://www.econbiz.de/10010393544
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...