EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"software Matlab"
Narrow search

Narrow search

Year of publication
Subject
All
NYSE indexes 2 Software Matlab 2 back propagation algorithm 2 modeling financial indicators 2 multilayer perceptron 2 self organizing maps 2 software Matlab 2 Aktienindex 1 Bandas Cambiarias 1 Computational simulations 1 Crecimiento 1 Energetic complementarity 1 Expectativas Racionales 1 Hybrid energy plants 1 Hybrid hydro PV plants 1 Index 1 Index number 1 Modelos Dinámicos no lineales 1 Neural networks 1 Neuronale Netze 1 Performance analysis 1 Software 1 Stock index 1 Theorie 1 Theory 1 USA 1 United States 1
more ... less ...
Online availability
All
Free 3 Undetermined 1
Type of publication
All
Article 3 Book / Working Paper 1
Type of publication (narrower categories)
All
Article 1 Article in journal 1 Aufsatz in Zeitschrift 1
Language
All
English 2 Undetermined 2
Author
All
Beluco, Alexandre 3 Beluco, Adriano 2 Bandeira, Denise L. 1 Bandeira, Denise Lindstrom 1 Castillo, José Armin Ordoñez 1 Krenzinger, Arno 1 Kroeff de Souza, Paulo 1
more ... less ...
Institution
All
UN - RCE - CID 1
Published in...
All
ECONOGRAFOS - ESCUELA DE ECONOMÍA 1 Journal of Risk and Financial Management 1 Journal of risk and financial management : JRFM 1 Renewable Energy 1
Source
All
RePEc 2 ECONIS (ZBW) 1 EconStor 1
Showing 1 - 4 of 4
Cover Image
Modeling NYSE Composite US 100 Index with a hybrid SOM and MLP-BP neural model
Beluco, Adriano; Bandeira, Denise L.; Beluco, Alexandre - In: Journal of Risk and Financial Management 10 (2017) 1, pp. 1-13
Neural networks are well suited to predict future results of time series for various data types. This paper proposes a hybrid neural network model to describe the results of the database of the New York Stock Exchange (NYSE). This hybrid model brings together a self organizing map (SOM) with a...
Persistent link: https://www.econbiz.de/10011843284
Saved in:
Cover Image
Modeling NYSE Composite US 100 Index with a hybrid SOM and MLP-BP neural model
Beluco, Adriano; Bandeira, Denise Lindstrom; Beluco, … - In: Journal of risk and financial management : JRFM 10 (2017) 1, pp. 1-13
Neural networks are well suited to predict future results of time series for various data types. This paper proposes a hybrid neural network model to describe the results of the database of the New York Stock Exchange (NYSE). This hybrid model brings together a self organizing map (SOM) with a...
Persistent link: https://www.econbiz.de/10011618968
Saved in:
Cover Image
Análisis del Modelo de Expectativas Parametrizadas: evidencia empírica
Castillo, José Armin Ordoñez - UN - RCE - CID - 2012
En este artículo voy a traer algunos temas básicos en torno al Algoritmo de Expectativas Parametrizadas (PEA). Como sabe este modelo es aplicado en macroeconomía y por las personas que hacen reglas de política, quienes lo usan en la forma en que podrían resolver los modelos dinámicos...
Persistent link: https://www.econbiz.de/10010763782
Saved in:
Cover Image
A method to evaluate the effect of complementarity in time between hydro and solar energy on the performance of hybrid hydro PV generating plants
Beluco, Alexandre; Kroeff de Souza, Paulo; Krenzinger, Arno - In: Renewable Energy 45 (2012) C, pp. 24-30
The combination of hydroelectric and photovoltaic sources of energy in a generation system may seem unfeasible due to the still quite high costs of the photovoltaic plants. However in the next few decades, significant reductions in those costs are to be expected. Moreover, this combination may...
Persistent link: https://www.econbiz.de/10010805129
Saved in:
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...