EconBiz - Find Economic Literature
    • Logout
    • Change account settings
  • A-Z
  • Beta
  • About EconBiz
  • News
  • Thesaurus (STW)
  • Academic Skills
  • Help
  •  My account 
    • Logout
    • Change account settings
  • Login
EconBiz - Find Economic Literature
Publications Events
Search options
Advanced Search history
My EconBiz
Favorites Loans Reservations Fines
    You are here:
  • Home
  • Search: subject:"statistical learning theory"
Narrow search

Narrow search

Year of publication
Subject
All
Statistical learning theory 11 Theorie 8 statistical learning theory 8 Theory 6 Prognoseverfahren 5 Statistical Learning Theory 5 Algorithm 4 Algorithmus 4 Artificial intelligence 4 Insolvency Prognosis 4 Künstliche Intelligenz 4 Regression analysis 4 Regressionsanalyse 4 SVMs 4 Estimation theory 3 Forecasting model 3 Learning process 3 Lernprozess 3 Mathematical programming 3 Mathematische Optimierung 3 Neural networks 3 Neuronale Netze 3 Schätztheorie 3 bagging 3 boosting 3 deep learning 3 forecasting 3 neural networks 3 nonlinear models 3 penalized regressions 3 random forests 3 regression trees 3 regularization 3 sieve approximation 3 American options 2 Big Data 2 Big data 2 Data mining 2 Kleinste-Quadrate-Methode 2 Kreditwürdigkeit 2
more ... less ...
Online availability
All
Undetermined 17 Free 7
Type of publication
All
Article 17 Book / Working Paper 7
Type of publication (narrower categories)
All
Article in journal 11 Aufsatz in Zeitschrift 11 Working Paper 4 Arbeitspapier 1 Graue Literatur 1 Non-commercial literature 1
Language
All
English 18 Undetermined 6
Author
All
Schäfer, Dorothea 5 Lee, Yuh-Jye 4 Yeh, Yi-Ren 4 Härdle, Wolfgang 3 Masini, Ricardo P. 3 Medeiros, Marcelo C. 3 Mendes, Eduardo F. 3 Härdle, Wolfgang Karl 2 Zanger, Daniel Z. 2 Albuquerque, Pedro Henrique M. 1 Arjas, Elja 1 Ban, Gah-Yi 1 Bezerra, Pedro Correia S. 1 Bousquet, Olivier 1 Chan, Laiwan 1 Chen, Shiyi 1 Corander, Jukka 1 Hardle, W. K. 1 Moro, R. A. 1 Moro, Rouslan A. 1 Mulvey, John M. 1 Obringer, Renee 1 Olivier, Wintenberger 1 Orsenigo, Carlotta 1 Pezalla, Simon 1 Piccialli, Veronica 1 Pierre, Alquier 1 Pun, Chi Seng 1 Rudin, Cynthia 1 Sciandrone, Marco 1 Sirén, Jukka 1 Spanos, Aris 1 Sun, Yifan 1 Vercellis, Carlo 1 Wang, Lei 1 Wang, Mengdi 1 Xiaoyin, Li 1 Xu, Yunbei 1 Ye, Jing 1 Zeevi, Assaf 1
more ... less ...
Institution
All
Sonderforschungsbereich 649: Ökonomisches Risiko, Wirtschaftswissenschaftliche Fakultät 2 DIW Berlin (Deutsches Institut für Wirtschaftsforschung) 1
Published in...
All
Journal of economic surveys 2 Mathematics of operations research 2 Quantitative Finance 2 Quantitative finance 2 SFB 649 Discussion Papers 2 4OR : a quarterly journal of operations research 1 Annals of the Institute of Statistical Mathematics 1 Computational Management Science 1 Computational Management Science : CMS 1 Computational Statistics 1 DIW Discussion Papers 1 Dependence Modeling 1 Discussion Papers of DIW Berlin 1 Mathematical finance : an international journal of mathematics, statistics and financial economics 1 Operations research 1 SFB 649 Discussion Paper 1 Socio-economic planning sciences : the international journal of public sector decision-making 1 Texto para discussão 1 Texto para discussão / Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Economia 1
more ... less ...
Source
All
ECONIS (ZBW) 12 RePEc 9 EconStor 3
Showing 11 - 20 of 24
Cover Image
Convergence of a least-squares Monte Carlo algorithm for American option pricing with dependent sample data
Zanger, Daniel Z. - In: Mathematical finance : an international journal of … 28 (2018) 1, pp. 447-479
Persistent link: https://www.econbiz.de/10011969162
Saved in:
Cover Image
Nonlinear optimization and support vector machines
Piccialli, Veronica; Sciandrone, Marco - In: 4OR : a quarterly journal of operations research 16 (2018) 2, pp. 111-149
Persistent link: https://www.econbiz.de/10011874285
Saved in:
Cover Image
Volatility forecasting via SVR-GARCH with mixture of Gaussian kernels
Bezerra, Pedro Correia S.; Albuquerque, Pedro Henrique M. - In: Computational Management Science : CMS 14 (2017) 2, pp. 179-196
Persistent link: https://www.econbiz.de/10011710726
Saved in:
Cover Image
The default risk of firms examined with smooth support vector machines
Härdle, Wolfgang Karl; Lee, Yuh-Jye; Schäfer, Dorothea; … - 2008
In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitability of Smooth...
Persistent link: https://www.econbiz.de/10010274139
Saved in:
Cover Image
The Default Risk of Firms Examined with Smooth Support Vector Machines
Härdle, Wolfgang; Lee, Yuh-Jye; Schäfer, Dorothea; … - Sonderforschungsbereich 649: Ökonomisches Risiko, … - 2008
the decision task of loan o–cers. Keywords: Insolvency Prognosis, SVMs, Statistical Learning Theory, Non … Statistical Learning Theory, Springer, New York. 29 Williams, C. K. I. and Seeger, M. (2001), ‘Using the Nystr˜om method to speed …
Persistent link: https://www.econbiz.de/10005207945
Saved in:
Cover Image
Prediction of time series by statistical learning: general losses and fast rates
Pierre, Alquier; Xiaoyin, Li; Olivier, Wintenberger - In: Dependence Modeling 1 (2014) January, pp. 65-93
We establish rates of convergences in statistical learning for time series forecasting. Using the PAC-Bayesian approach, slow rates of convergence √ d/n for the Gibbs estimator under the absolute loss were given in a previous work [7], where n is the sample size and d the dimension of the set...
Persistent link: https://www.econbiz.de/10011008551
Saved in:
Cover Image
The default risk of firms examined with Smooth Support Vector Machines;
Härdle, Wolfgang Karl; Lee, Yuh-Jye; Schäfer, Dorothea; … - 2007
In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitability of Smooth...
Persistent link: https://www.econbiz.de/10010274162
Saved in:
Cover Image
The Default Risk of Firms Examined with Smooth Support Vector Machines
Härdle, Wolfgang; Lee, Yuh-Jye; Schäfer, Dorothea; … - DIW Berlin (Deutsches Institut für Wirtschaftsforschung) - 2007
In the era of Basel II a powerful tool for bankruptcy prognosis is vital for banks. The tool must be precise but also easily adaptable to the bank's objections regarding the relation of false acceptances (Type I error) and false rejections (Type II error). We explore the suitability of Smooth...
Persistent link: https://www.econbiz.de/10004963905
Saved in:
Cover Image
Predicting Bankruptcy with Support Vector Machines
Härdle, Wolfgang; Moro, Rouslan A.; Schäfer, Dorothea - Sonderforschungsbereich 649: Ökonomisches Risiko, … - 2005
The purpose of this work is to introduce one of the most promising among recently developed statistical techniques – the support vector machine (SVM) – to corporate bankruptcy analysis. An SVM is implemented for analysing such predictors as financial ratios. A method of adapting it to...
Persistent link: https://www.econbiz.de/10005489966
Saved in:
Cover Image
Modeling default risk with support vector machines
Chen, Shiyi; Hardle, W. K.; Moro, R. A. - In: Quantitative Finance 11 (2011) 1, pp. 135-154
Predicting default risk is important for firms and banks to operate successfully. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so-called Support Vector Machine (SVM) to predict the default risk of German firms. Our...
Persistent link: https://www.econbiz.de/10009208246
Saved in:
  • First
  • Prev
  • 1
  • 2
  • 3
  • Next
  • Last
A service of the
zbw
  • Sitemap
  • Plain language
  • Accessibility
  • Contact us
  • Imprint
  • Privacy

Loading...