Showing 1 - 7 of 7
This paper features an analysis of the relative effectiveness, in terms of the Adjusted R-Square, of a variety of methods of modelling realized volatility (RV), namely the use of Gegenbauer processes in Auto-Regressive Moving Average format, GARMA, as opposed to Heterogenous Auto-Regressive HAR...
Persistent link: https://www.econbiz.de/10014393082
This paper features an analysis of cryptocurrencies and the impact of the COVID-19 pandemic on their effectiveness as a portfolio diversification tool and explores the correlations between the continuously compounded returns on Bitcoin, Ethereum and the S&P500 Index using a variety of parametric...
Persistent link: https://www.econbiz.de/10013161685
The paper examines the relative performance of Stochastic Volatility (SV) and GARCH(1,1) models fitted to twenty plus years of daily data for three indices. As a benchmark, I use the realized volatility (RV) for the S&P 500, DOW JONES and STOXX50 indices, sampled at 5-minute intervals, taken...
Persistent link: https://www.econbiz.de/10012384599
Financial risk measurement is a challenging task because both the types of risk and their measurement techniques evolve quickly. This book collects a number of novel contributions for the measurement of financial risk, which addresses partially explored risks or risk takers in a wide variety of...
Persistent link: https://www.econbiz.de/10012173017
Financial Risk Measurement is a challenging task, because both the types of risk and the techniques evolve very quickly. This book collects a number of novel contributions to the measurement of financial risk, which address either non-fully explored risks or risk takers, and does so in a wide...
Persistent link: https://www.econbiz.de/10012117977
The paper examines the relative performance of Stochastic Volatility (SV) and Generalised Autoregressive Conditional Heteroscedasticity (GARCH) (1,1) models fitted to ten years of daily data for FTSE. As a benchmark, we used the realized volatility (RV) of FTSE sampled at 5 min intervals taken...
Persistent link: https://www.econbiz.de/10012203997
This paper examines the use of machine learning methods in modeling and forecasting time series with long memory through GARMA. By employing rigorous model selection criteria through simulation study, we find that the hybrid GARMA-LSTM model outperforms traditional approaches in forecasting...
Persistent link: https://www.econbiz.de/10015408216